923 resultados para Natural Language Processing,Recommender Systems,Android,Applicazione mobile
Resumo:
This paper presents an approach for assisting low-literacy readers in accessing Web online information. The oEducational FACILITAo tool is a Web content adaptation tool that provides innovative features and follows more intuitive interaction models regarding accessibility concerns. Especially, we propose an interaction model and a Web application that explore the natural language processing tasks of lexical elaboration and named entity labeling for improving Web accessibility. We report on the results obtained from a pilot study on usability analysis carried out with low-literacy users. The preliminary results show that oEducational FACILITAo improves the comprehension of text elements, although the assistance mechanisms might also confuse users when word sense ambiguity is introduced, by gathering, for a complex word, a list of synonyms with multiple meanings. This fact evokes a future solution in which the correct sense for a complex word in a sentence is identified, solving this pervasive characteristic of natural languages. The pilot study also identified that experienced computer users find the tool to be more useful than novice computer users do.
Resumo:
Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.
Resumo:
No âmbito do Processamento Automático de Línguas Naturais (PLN), o desenvolvimento de recursos léxico-semânticos é premente. Ao conceber os sistemas de PLN como um exercício de engenharia da linguagem humana, acredita-se que o desenvolvimento de tais recursos pode ser beneficiado pelos modelos de representação do conhecimento, desenvolvidos pela Engenharia do Conhecimento. Esses modelos, em particular, fornecem simultaneamente o arcabouço teórico-metodológico e a metalinguagem formal para o tratamento computacional do significado das unidades lexicais. Neste artigo, após a apresentação da concepção linguístico-computacional de léxico, elucidam-se os principais paradigmas de representação do conhecimento, enfatizando a abordagem do significado e a metalinguagem formal vinculadas a cada um deles.
Resumo:
One of the great challenges of structural dynamics is to ally structures lighther and stronger. The great difficulty is that light systems, in general, have a low inherent damping. Besides, they contain resonance frequencies in the low frequency range. So, any external disturbance can excite the system in some resonance and the resulting effect can be drastic. The methodologies of active damping, with control algorithms and piezoelectric sensors and actuators coupled in a base structure, are attractive in current days, in order to overcome the contradictory features of these requeriments. In this sense, this article contributes with a bibliographical review of the literature on the importance of active noise and vibration control in engineering applications, models of smart structures, techniques of optimal placement of piezoelectric sensors and actuators and methodologies of structural active control. Finally, it is discussed the future perspectives in this area.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the architecture of a natural language processing system based on linguistic knowledge, two types of component are important: the knowledge databases and the processing modules. One of the knowledge databases is the lexical database, which is responsible for providing the lexical unities and its properties to the processing modules. The systems that process two or more languages require bilingual and/or multilingual lexical databases. These databases can be constructed by aligning distinct monolingual databases. In this paper, we present the interlingua and the strategy of aligning the two monolingual databases in REBECA, which only stores concepts from the “wheeled vehicle” domain.
Resumo:
La tesi riguarda lo sviluppo di un'applicazione che estende la possibilità di effettuare i caricamenti dei package di SAP BPC ai dispositivi mobile, fino ad ora questo era possibile solo attraverso l'interfaccia di Microsoft Excel.
Resumo:
uesto progetto di tesi ha come obiettivo la creazione di una applicazio- ne mobile collaborativa per il monitoraggio e l’analisi dei viaggi ferroviari. Collaborativa perché per poter adempiere alla sua funzione è necessario che i suoi utilizzatori partecipino attivamente all’accrescimento del database di dati, supponendo che con più dati raccolti sia maggiore l’accuratezza di que- st’ultimi. Sarà un’applicazione di monitoraggio nel senso che di ogni singolo treno verranno presi in esame una serie di aspetti considerati utili ai fini della valutazione della qualità del servizio offerto. Analisi perché, una volta raccolti, questi dati possono essere utilizzati sia da coloro che viaggiano in treno -per decidere se prendere un treno piuttosto che un altro- sia da coloro che gestiscono la rete in modo da stilare delle statistiche o per eseguire degli interventi mirati su di una specifica tratta o anche per potenziare il servizio clienti a bordo del treno.
Resumo:
This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.