822 resultados para Nanocomposites. Nanographite. Epoxy. Expanded graphite. Microwave
Resumo:
This work examines the effects of level of silica filler (at 0, 10, 30, 50wt%) on the gelation and vitrification of a model silica-filled diglycidyl ether of bisphenol F (DGEBF)/methylenedianiline (MDA) system. An increased filler level is shown to decrease the gelation and vitrification times at low temperatures (below 80degreesC). FTIR cure kinetics show that the reaction rates are increased and the activation energies of gelation are reduced at these temperatures, indicating that network formation is made easier. Entropic and catalytic reasons for this phenomenon are discussed. (C) 2003 Society of Chemical Industry.
Resumo:
A comparative study of carbon gasification with O-2 and CO2 was conducted by using density functional theory calculations. It was found that the activation energy and the number of active sites in carbon gasification reactions are significantly affected by both the capacity and manner of gas chemisorption. O-2 has a strong adsorption capacity and the dissociative chemisorption of O-2 is thermodynamically favorable on either bare carbon surface or even isolated edge sites. As a result, a large number of semiquinone and o-quinone oxygen can be formed indicating a significant increase in the number of active sites. Moreover, the weaker o-quinone C-C bonds can also drive the reaction forward at (ca. 30%) lower activation energy. Epoxy oxygen forms under relatively high O-2 pressure, and it can only increase the number of active sites, not further reduce the activation energy. CO2 has a lower adsorption capacity. Dissociative chemisorption of CO2 can only occur on two consecutive edge sites and o-quinone oxygen formed from CO2 chemisorption is negligible, let alone epoxy oxygen. Therefore, CO2-carbon reaction needs (ca 30%) higher activation energy. Furthermore, the effective active sites are also reduced by the manner Of CO2 chemisorption. A combination of the higher activation energy and the fewer active sites leads to the much lower reaction rate Of CO2-carbon.
Resumo:
The Entodiniomorphida are a diverse and morphologically complex group of ciliates which are symbiotic within the digestive tracts of herbivorous mammals. Previous phylogenies of the group have exclusively considered members of one family, the Ophryoscolecidae, which are symbiotic within ruminants. We sought to improve understanding of evolution within the entodiniomorphs by expanding the range of ciliates examined to include the Cycloposthiidae and Macropodimidae (symbionts of equids and macropodids respectively). The entire SSU-rRNA gene was sequenced for 3 species, Cycloposthium edentatum, Macropodinium ennuensis and M. yalanbense, and aligned against 14 litostome species and 2 postciliodesmatophoran outgroup species. Cycloposthium was consistently grouped as the sister-taxon to the Ophryoscolecidae although support for this relationship was low. This suggests that there is more evolutionary distance between the Cycloposthiidae and Ophryoscolecidae than previously inferred from studies of gross morphology, cell ontogeny or ultrastructure. In contrast, Macropodinium did not group with any of the entodiniomorphs, instead forming the sister group to the entire Trichostomatia (Entodiniomorphida + Vestibuliferida). This early diverging position for the macropodiniids is concordant with their morphology and ontogeny which failed to group the family with any of the entodiniomorph suborders. The currently accepted classification of the Trichostomatia is thus deficient and in need of review.
Resumo:
A series of polyethylene-layered silicate nanocomposites has been studied as possible new candidates for rotational moulding. Two organically treated layered silicates were melt-compounded into a maleated linear low-density polyethylene host polymer at loadings of 6 and 9%, by weight. The morphology and properties of the nanocomposites were assessed by using dynamic mechanical thermal analysis, parallel-plate rheometry, wide-angle X-ray diffraction and transmission electron microscopy. The sintering behaviour of the nanocomposites was qualitatively assessed via hot-stage microscopy, indicating that the choice of nanofiller will play an important role in terms of producing nanocomposite materials with acceptable processability for rotational moulding. (C) 2003 Society of Chemical Industry.
Resumo:
The origin of the electrical response of vapor grown carbon nanofiber (VGCNF) + epoxy composites is investigated by studying the electrical behavior of VGCNF with resin, VGCNF with hardener and cured composites, separately. It is demonstrated that the onset of the conductivity is associated to the emergence of a weak disorder regime. It is also shown that the weak disorder regime is related to a hopping depending on the physical properties of the polymer matrix.
Resumo:
The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures.
Resumo:
Four dispersion methods were used for the preparation of vapour grown carbon nanofibre (VGCNF)/epoxy composites. It is shown that each method induces certain levels of VGCNF dispersion and distribution within the matrix, and that these have a strong influence on the composite electrical properties. A homogenous VGCNF dispersion does not necessarily imply higher electrical conductivity. In fact, it is concluded that the presence of well distributed clusters, rather than a fine dispersion, is more important for achieving larger conductivities for a given VGCNF concentration. It is also found that the conductivity can be described by a weak disorder regime.
Resumo:
Molecular dynamics simulations were employed to analyze the mechanical properties of polymer-based nanocomposites with varying nanofiber network parameters. The study was focused on nanofiber aspect ratio, concentration and initial orientation. The reinforcing phase affects the behavior of the polymeric nanocomposite. Simulations have shown that the fiber concentration has a significant effect on the properties, with higher loadings resulting in higher stress levels and higher stiffness, matching the general behavior from experimental knowledge in this field. The results also indicate that, within the studied range, the observed effect of the aspect ratio and initial orientation is smaller than that of the concentration, and that these two parameters are interrelated.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
A model to simulate the conductivity of carbon nanotube/polymer nanocomposites is presented. The proposed model is based on hopping between the fillers. A parameter related to the influence of the matrix in the overall composite conductivity is defined. It is demonstrated that increasing the aspect ratio of the fillers will increase the conductivity. Finally, it is demonstrated that the alignment of the filler rods parallel to the measurement direction results in higher conductivity values, in agreement with results from recent experimental work.
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
MOR zeolites were modified via desilication treatments with NaOH, under conventional and microwave heating. The samples were characterized by powder X-ray diffraction, (27)Al and (29)Si NMR spectroscopy. TEM and N(2) adsorption at -196 degrees C. The acidity of the samples and the space available inside the pores were evaluated through a catalytic model reaction, the isomerization of m-xylene, for which the profiles of the coke thermal decomposition were also analyzed. Powder X-ray diffraction and (29)Si and (27)Al MNR results show that in comparison with conventional heating, microwave irradiation (a less time consuming process) leads to identical amount of Si extraction from the zeolite framework. With this treatment. in addition to the customary mesopores development promoted by conventional heating, a partial conversion of the zeolite microporosity into larger micropores, is observed. The microwave irradiated and conventionally heated samples show different catalytic behavior in the m-xylene isomerization model reaction. It was observed that, by controlling the experimental conditions, it is possible to obtain samples with catalytic properties closer to the parent material, which is also confirmed by the respective coke analysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer’s spent grains (BSG). A 24 orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31±0.04% (w/w), which was fivefold higher than that obtained with conventional solid–liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DADMS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds.