249 resultados para NONEQUILIBRIUM
Resumo:
The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system.
Resumo:
Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.
Resumo:
A very simple model of a classical particle in a heat bath under the influence of external noise is studied. By means of a suitable hypothesis, the heat bath is reduced to an internal colored noise (OrnsteinUhlenbeck noise). In a second step, an external noise is coupled to the bath. The steady state probability distributions are obtained.
Resumo:
Temperature and velocity correlation functions in a fluid subjected to conditions creating both a temperature and a velocity gradient are computed up to second order in the gradients. Temperature and velocity fluctuations are coupled due to convection and viscous heating. When the viscosity goes to infinity one gets the temperature correlation function for a solid under a temperature gradient, which contains a long-ranged contribution, quadratic in the temperature gradient. The velocity correlation function also exhibits long-range behavior. In a particular case its equilibrium term is diagonal whereas the nonequilibrium correction contains nondiagonal terms.
Resumo:
Onsager's symmetry theorem for transport near equilibrium is extended in two directions. A corresponding symmetry is obtained for linear transport near nonequilibrium stationary states, and the class of transport laws is extended to include nonlocality in both space and time. The results are formally exact and independent of any specific model for the nonequilibrium state.
Resumo:
We show a new mechanism to extract energy from nonequilibrium fluctuations typical of periodically driven non-Hermitian systems. The transduction of energy between the driving force and the system is revealed by an anomalous behavior of the susceptibility, leading to a diminution of the dissipated power and consequently to an improvement of the transport properties. The general framework is illustrated by the analysis of some relevant cases.
Resumo:
We compute nonequilibrium correlation functions about the stationary state in which the fluid moves as a consequence of tangential stresses on the liquid surface, related to a varying surface tension (thermocapillary motion). The nature of the stationary state makes it necessary to take into account that the system is finite. We then extend a previous analysis on fluctuations about simple stationary states to include some effects related to the finite size of the sample.
Resumo:
We study the dynamics of density fluctuations in purely diffusive systems away from equilibrium. Under some conditions the static density correlation function becomes long ranged. We then analyze this behavior in the framework of nonequilibrium fluctuating hydrodynamics.
Resumo:
We have shown that the mobility tensor for a particle moving through an arbitrary homogeneous stationary flow satisfies generalized Onsager symmetry relations in which the time-reversal transformation should also be applied to the external forces that keep the system in the stationary state. It is then found that the lift forces, responsible for the motion of the particle in a direction perpendicular to its velocity, have different parity than the drag forces.
Resumo:
We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.
Resumo:
Extreme times techniques, generally applied to nonequilibrium statistical mechanical processes, are also useful for a better understanding of financial markets. We present a detailed study on the mean first-passage time for the volatility of return time series. The empirical results extracted from daily data of major indices seem to follow the same law regardless of the kind of index thus suggesting an universal pattern. The empirical mean first-passage time to a certain level L is fairly different from that of the Wiener process showing a dissimilar behavior depending on whether L is higher or lower than the average volatility. All of this indicates a more complex dynamics in which a reverting force drives volatility toward its mean value. We thus present the mean first-passage time expressions of the most common stochastic volatility models whose approach is comparable to the random diffusion description. We discuss asymptotic approximations of these models and confront them to empirical results with a good agreement with the exponential Ornstein-Uhlenbeck model.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.