831 resultados para NK-KappaB


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: O Lúpus Eritematoso Sistémico (LES) é uma doença inflamatória crónica auto-imune que afecta múltiplos órgãos. A sua etiologia é multifactorial, em que a interacção entre factores genéticos, hormonais, ambientais e infecciosos leva à perda de tolerância imunológica e à produção de auto-anticorpos dirigidos principalmente contra antigénios nucleares, alguns dos quais participam nas lesões teciduais. As células NK através das suas capacidades citotóxicas e produção de citocinas inflamatórias podem influenciar as doenças auto-imunes. Objectivos: O objectivo deste estudo foi quantificar e analisar as características imunofenotípicas e funcionais das duas principais subpopulações de células NK nos pacientes com LES. Material e Métodos: Este estudo incidiu numa população de 44 indivíduos com diagnóstico de LES, dos quais 18 se encontravam na fase activa e 26 na fase inactiva da doença e em 30 indivíduos saudáveis, que constituíram o grupo controlo. Para este universo populacional, foi estudada a percentagem (%) e número absoluto de células NK, assim como das suas duas subpopulações, CD56dim e CD56bright, no sangue periférico e a frequência com que estes dois grupos celulares expressam o antigénio CD57 e o receptor de quimiocina CXCR3, e produzem interferon-gama (IFN- γ), factor de necrose tumoral-alfa (TNF- α), granzima B e perforina, assim como a quantidade de proteína por célula (MIF - média de intensidade de fluorescência), por citometria de fluxo. Resultados: Os resultados obtidos revelam uma clara diminuição dos números absolutos e relativos de células NK nos doentes com LES, principalmente naqueles com doença activa, enquanto que as proporções dos subtipos de células NK, não foram afectadas. Nos pacientes com LES activo encontrámos uma baixa densidade de CXCR3 em ambos os subtipos de células NK e uma baixa frequência de células NK CD56dim a expressar CXCR3. Para além disso, observámos que a expressão de granzima B nos dois grupos de doentes com LES está diminuída mas a percentagem de células NK a expressar granzima B e perforina está aumentada, especialmente na doença activa. Observou-se uma diminuição na percentagem de células NK CD56dim e CD56bright a produzir TNF- α e na sua expressão nas células NK CD56dim na doença activa, enquanto que a expressão de IFN- γ nas células NK CD56bright está aumentada em todos os pacientes com LES. Conclusão: Os nossos resultados sugerem que as células NK apresentam alterações funcionais e fenotípicas únicas, que são particularmente evidentes na doença activa, e podem afectar o desenvolvimento da doença.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At head of title: Enver ve Niyazi beylere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Különlenyomat az "Irodalmtört. közlemények" XI. kötetéből."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. NKT cells have diverse immune regulatory functions including activation of cells involved in Th1- and Th2-type immune activities. Most previous studies have investigated the functions of NKT cells as a single family but more recent evidence indicates the distinct functional properties of NKT cell subpopulation. This study aims to determine whether NKT cell subpopulations have different stimulatory activities on other immune cells that may affect the outcome of NKT cell-based immunotherapy. Methods. NKT cells and NKT cell subpopulations (CD4(+)CD8(-), CD4(-)CD8(+), CD4(-)CD8(+)) were cocultured with PBMC and their activities on immune cells including CD4(+) and CD8(+) T cells, NK cells, and B cells were assessed by flow cytometry. The production of cytokines in culture was measured by enzyme-linked immunsorbent assay. Results. The CD4(+)CD8(-) NKT cells demonstrated substantially greater stimulatory activities on CD4(+) T cells, NK cells, and B cells than other NKT cell subsets. The CD4(-)CD8(+) NKT cells showed the greatest activity on CD8(+) T cells, and were the only NKT cell subset that activated these immune cells. The CD4(-)CD8(-) NKT cells showed moderate stimulatory activity on CD4(+) T cells and the least activity on other immune cells. Conclusion. The results here suggest that NKT cell subpopulations differ in their abilities to stimulate other immune cells. This highlights the potential importance of manipulating specific NKT cell subpopulations for particular therapeutic situations and of evaluating subpopulations, rather than NKT cells as a group, during investigation of a possible role of NKT cells in various disease settings. (c) 2006 International Society for Experimental Hematology. Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore phenotype and function of NK cells in kidney transplant recipients, we investigated the peripheral NK cell repertoire, capacity to respond to various stimuli and impact of immunosuppressive drugs on NK cell activity in kidney transplant recipients. CD56(dim) NK cells of kidney transplanted patients displayed an activated phenotype characterized by significantly decreased surface expression of CD16 (p=0.0003), CD226 (p<0.0001), CD161 (p=0.0139) and simultaneously increased expression of activation markers like HLA-DR (p=0.0011) and CD25 (p=0.0015). Upon in vitro stimulation via Ca++-dependent signals, down-modulation of CD16 was associated with induction of interferon (IFN)-gamma expression. CD16 modulation and secretion of NFAT-dependent cytokines such as IFN-gamma, TNF-alpha, IL-10 and IL-31 were significantly suppressed by treatment of isolated NK cells with calcineurin inhibitors but not with mTOR inhibitors. In kidney transplant recipients, IFN-gamma production was retained in response to HLA class I-negative target cells and to non-specific stimuli, respectively. However, secretion of other cytokines like IL-13, IL-17, IL-22 and IL-31 was significantly reduced compared to healthy donors. In contrast to suppression of cytokine expression at the transcriptional level, cytotoxin release, i.e. perforin, granzyme A/B, was not affected by immunosuppression in vitro and in vivo in patients as well as in healthy donors. Thus, immunosuppressive treatment affects NK cell function at the level of NFAT-dependent gene expression whereby calcineurin inhibitors primarily impair cytokine secretion while mTOR inhibitors have only marginal effects. Taken together, NK cells may serve as indicators for immunosuppression and may facilitate a personalized adjustment of immunosuppressive medication in kidney transplant recipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56(low) NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56(low) NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94(hi)/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56(+low) CD16(+) and CD56(+high)  CD16(-/+low) NK-cells. Conventional CD56(+low) and CD56(+high) NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56(+low) NK-cells are mainly CXCR1/CXCR2(+) and CXCR3/CCR5(-/+), whereas mostly CD56(+high) NK-cells are CXCR1/CXCR2(-) and CXCR3/CCR5(+). Both NK-cell subsets have variable CXCR4 expression and are CCR4(-) and CCR6(-). The CKR repertoire of the CD56(+low) NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56(+high) NK-cells mimics that of Th1(+) T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56(+int) NK-cells. These NK-cells are CXCR3/CCR5(+), they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57(-) and CD158a(-). In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56(+high) and CD56(+low) NK-cells populations.