995 resultados para NITROGEN-DIOXIDE
Air quality observations by a mobile laboratory aquired on 2015-02-12 to 2015-02-13, Campania region
Resumo:
Objetivo: Evaluar la variación espacial de la exposición a dióxido de nitrógeno (NO2) en la ciudad de Valencia y su relación con la privación socioeconómica y la edad. Métodos: La población por sección censal (SC) procede del Instituto Nacional de Estadística. Los niveles de NO2 se midieron en 100 puntos del área de estudio, mediante captadores pasivos, en tres campañas entre 2002 y 2004. Se utilizó regresión por usos del suelo (LUR) para obtener el mapa de los niveles de NO2. Las predicciones del LUR se compararon con las proporcionadas por: a) el captador más cercano de la red de vigilancia, b) el captador pasivo más cercano, c) el conjunto de captadores en un entorno y d) kriging. Se asignaron niveles de contaminación para cada SC. Se analizó la relación entre los niveles de NO2, un índice de privación con cinco categorías y la edad (≥65 años). Resultados: El modelo LUR resultó el método más preciso. Más del 99% de la población superó los niveles de seguridad propuestos por la Organización Mundial de la Salud. Se encontró una relación inversa entre los niveles de NO2 y el índice de privación (β = –2,01 μg/m3 en el quintil de mayor privación respecto al de menor, IC95%: –3,07 a –0,95), y una relación directa con la edad (β = 0,12 μg/m3 por incremento en unidad porcentual de población ≥65 años, IC95%: 0,08 a 0,16). Conclusiones: El método permitió obtener mapas de contaminación y describir la relación entre niveles de NO2 y características sociodemográficas.
Resumo:
"Contract no. DA-30-069-ORD-3443. ARPA no. 253-62."
Resumo:
Mode of access: Internet.
Resumo:
"April, 1982."
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background. This paper examines the short-term health effects of air pollution on daily hospital admissions in Australian cities (those considered comprise more than 50% of the Australian population) for the period 1996-99. Methods: The study used a similar protocol to overseas studies and derived single city and pooled estimates using different statistical approaches to assess the accuracy of the results. Results: There was little difference between the results derived from the different statistical approaches for cardiovascular admissions, while in those for respiratory admissions there were differences. For three of the four cities (for the other the results were positive but not significant), fine particles (measured by nephelometry - bsp) and nitrogen dioxide (NO2) have a significant impact on cardiovascular admissions (for total cardiac admissions, RR=1.0856 for a one-unit increase in bsp (10(-4). m(-1)), RR=1.0023 for a 1 ppb increase in NO2). For three of the four cities (for the other, the results were negative and significant), fine particles, NO2 and ozone have a significant impact on respiratory admissions (for total elderly respiratory admissions, RR=1.0552 per 1 unit (10(-4).m(-1)) increase in bsp, RR=1.0027 per 1ppb increase in NO2, RR=10014 per 1 ppb increase in ozone for elderly asthma and COPD admissions). In all analyses the particle and NO2 impacts appear to be related. Conclusions: Similar to overseas studies, air pollution has an impact on hospital admissions in Australian cities, but there can be significant differences between cities.
Resumo:
This thesis examines the spatial and temporal variation in nitrogen dioxide (NO2) levels in Guernsey and the impacts on pre-existing asthmatics. Whilst air quality in Guernsey is generally good, the levels of NO2 exceed UK standards in several locations. The evidence indicates that people suffering from asthma have exacerbation of their symptoms if exposed to elevated levels of air pollutants including NO2, although this research has never been carried out in Guernsey before. In addition, exposure assessment of individuals is rarely carried out and research in this area is limited due to the complexity of undertaking such a study, which will include a combination of exposures in the home, the workplace and ambient exposures, which vary depending on the individual daily experience. For the first time in Guernsey, this research has examined NO2 levels in correlation with asthma patient admissions to hospital, assessment of NO2 exposures in typical homes and typical workplaces in Guernsey. The data showed a temporal correlation between NO2 levels and the number of hospital admissions and the trend from 2008-2012 was upwards. Statistical analysis of the data did not show a significant linear correlation due to the small size of the data sets. Exposure assessment of individuals showed a spatial variation in exposures in Guernsey and assessment in indoor environments showed that real-time analysis of NO2 levels needs to be undertaken if indoor micro environments for NO2 are the be assessed adequately. There was temporal and spatial variation in NO2 concentrations measured using diffusion tubes, which provide a monthly mean value, and analysers measuring NO2 concentrations in real time. The research shows that building layout and design are important factors for good air flow and ventilation and the dispersion of NO2 indoors. Environmental Health Officers have statutory responsibilities for ambient air quality, hygiene of buildings and workplace environments and this role needs to be co-ordinated with healthcare professionals to improve health outcomes for asthmatics. The outcome of the thesis was the development of a risk management framework for pre-existing asthmatics at work for use by regulators of workplaces and an information leaflet to assist in improving health outcomes for asthmatics in Guernsey.
Resumo:
The long-term adverse effects on health associated with air pollution exposure can be estimated using either cohort or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of people are assessed periodically over a number of years, and then related to estimated ambient pollution concentrations in the cities in which they live. However, such cohort studies are expensive and time consuming to implement, due to the long-term follow up required for the cohort. Therefore, spatio-temporal ecological studies are also being used to estimate the long-term health effects of air pollution as they are easy to implement due to the routine availability of the required data. Spatio-temporal ecological studies estimate the health impact of air pollution by utilising geographical and temporal contrasts in air pollution and disease risk across $n$ contiguous small-areas, such as census tracts or electoral wards, for multiple time periods. The disease data are counts of the numbers of disease cases occurring in each areal unit and time period, and thus Poisson log-linear models are typically used for the analysis. The linear predictor includes pollutant concentrations and known confounders such as socio-economic deprivation. However, as the disease data typically contain residual spatial or spatio-temporal autocorrelation after the covariate effects have been accounted for, these known covariates are augmented by a set of random effects. One key problem in these studies is estimating spatially representative pollution concentrations in each areal which are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over modelled concentrations (grid level) from an atmospheric dispersion model. The aim of this thesis is to investigate the health effects of long-term exposure to Nitrogen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order to have an initial impression about the air pollution health effects in mainland Scotland, chapter 3 presents a standard epidemiological study using a benchmark method. The remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis which has been threefold: (i) how to better estimate pollution by developing a multivariate spatio-temporal fusion model that relates monitored and modelled pollution data over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on (ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-term health effects of NO2, that fuses modelled and measured pollution data to provide improved predictions of areal level pollution concentrations and hence health effects. The air pollution fusion model proposed is a Bayesian space-time linear regression model for relating the measured concentrations to the modelled concentrations for a single pollutant, whilst allowing for additional covariate information such as site type (e.g. roadside, rural, etc) and temperature. However, it is known that some pollutants might be correlated because they may be generated by common processes or be driven by similar factors such as meteorology. The correlation between pollutants can help to predict one pollutant by borrowing strength from the others. Therefore, in chapter 5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion model that extends the single pollutant model in chapter 4, which relates monitored and modelled pollution data over space, time and pollutant to predict pollution across mainland Scotland. Considering that we are exposed to multiple pollutants simultaneously because the air we breathe contains a complex mixture of particle and gas phase pollutants, the health effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore, this is a natural extension to the single pollutant health effects in chapter 4. Given NO2 and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a temporally-varying linear model to regress one pollutant (e.g. NO2) against another (e.g. PM10) and then use the residuals in the disease model as well as PM10, thus investigating the health effects of exposure to both pollutants simultaneously. Another issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution concentrations when estimating their health effects. There are in total four approaches being developed to adjust the exposure uncertainty. Finally, chapter 7 summarises the work contained within this thesis and discusses the implications for future research.
Resumo:
Satellites have great potential for diagnosis of surface air quality conditions, though reduced sensitivity of satellite instrumentation to the lower troposphere currently impedes their applicability. One objective of the NASA DISCOVER-AQ project is to provide information relevant to improving our ability to relate satellite-observed columns to surface conditions for key trace gases and aerosols. In support of DISCOVER-AQ, this dissertation investigates the degree of correlation between O3 and NO2 column abundance and surface mixing ratio during the four DISCOVER-AQ deployments; characterize the variability of the aircraft in situ and model-simulated O3 and NO2 profiles; and use the WRF-Chem model to further investigate the role of boundary layer mixing in the column-surface connection for the Maryland 2011 deployment, and determine which of the available boundary layer schemes best captures the observations. Simple linear regression analyses suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere may be most meaningful for surface air quality under the conditions associated with the Maryland 2011 campaign, which included generally deep, convective boundary layers, the least wind shear of all four deployments, and few geographical influences on local meteorology, with exception of bay breezes. Hierarchical clustering analysis of the in situ O3 and NO2 profiles indicate that the degree of vertical mixing (defined by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the column vs. surface correlations for many clusters for both O3 and NO2. However, comparisons to the CMAQ model suggest that, among other errors, vertical mixing is overestimated, causing too great a column-surface connection within the model. Finally, the WRF-Chem model, a meteorology model with coupled chemistry, is used to further investigate the impact of vertical mixing on the O3 and NO2 column-surface connection, for an ozone pollution event that occurred on July 26-29, 2011. Five PBL schemes were tested, with no one scheme producing a clear, consistent “best” comparison with the observations for PBLH and pollutant profiles; however, despite improvements, the ACM2 scheme continues to overestimate vertical mixing.
Resumo:
Twenty one sampling locations were assessed for carbon monoxide (CO), carbondioxide (CO2), oxygen (O2), sulphur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxide (NO), suspended particulate matter (SPM) and noise level using air pollutants measurement methods approved by ASTM for each specific parameter. All equipments and meters were all properly pre-calibrated before each usage for quality assurance. Findings of the study showed that measured levels of noise (61.4 - 101.4 dBA), NO (0.0 - 3.0 ppm), NO2 (0.0 - 3.0 ppm), CO (1.0 – 42.0 ppm) and SPM (0.14 – 4.82 ppm) in all sampling areas were quite high and above regulatory limits however there was no significant difference except in SPM (at all the sampling points), and noise, NO2 and NO (only in major traffic intersection). Air quality index (AQI) indicates that the ambient air can be described as poor for SPM, varied from good to very poor for CO, while NO and NO2 are very good except at major traffic intersection where they were both poor and very poor (D-E). The results suggest that strict and appropriate vehicle emission management, industrial air pollution control coupled with close burning management of wastes should be considered in the study area to reduce the risks associated with these pollutants.
Resumo:
The study of Quality of Life (Qol) has been conducted on various scales throughout the years with focus on assessing overall quality of living amongst citizens. The main focus in these studies have been on economic factors, with the purpose of creating a Quality of Life Index (QLI).When it comes down to narrowing the focus to the environment and factors like Urban Green Spaces (UGS) and air quality the topic gets more focused on pointing out how each alternative meets this certain criteria. With the benefits of UGS and a healthy environment in focus a new Environmental Quality of Life Index (EQLI) will be proposed by incorporating Multi Criteria Analysis (MCA) and Geographical Information Systems (GIS). Working with MCA on complex environmental problems and incorporating it with GIS is a challenging but rewarding task, and has proven to be an efficient approach among environmental scientists. Background information on three MCA methods will be shown: Analytical Hierarchy Process (AHP), Regime Analysis and PROMETHEE. A survey based on a previous study conducted on the status of UGS within European cities was sent to 18 municipalities in the study area. The survey consists of evaluating the current status of UGS as well as planning and management of UGS with in municipalities for the purpose of getting criteria material for the selected MCA method. The current situation of UGS is assessed with use of GIS software and change detection is done on a 10 year period using NDVI index for comparison purposes to one of the criteria in the MCA. To add to the criteria, interpolation of nitrogen dioxide levels was performed with ordinary kriging and the results transformed into indicator values. The final outcome is an EQLI map with indicators of environmentally attractive municipalities with ranking based on predefinedMCA criteria using PROMETHEE I pairwise comparison and PROMETHEE II complete ranking of alternatives. The proposed methodology is applied to Lisbon’s Metropolitan Area, Portugal.