920 resultados para NETWORK MODELS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A practical Bayesian approach for inference in neural network models has been available for ten years, and yet it is not used frequently in medical applications. In this chapter we show how both regularisation and feature selection can bring significant benefits in diagnostic tasks through two case studies: heart arrhythmia classification based on ECG data and the prognosis of lupus. In the first of these, the number of variables was reduced by two thirds without significantly affecting performance, while in the second, only the Bayesian models had an acceptable accuracy. In both tasks, neural networks outperformed other pattern recognition approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substantial behavioural and neuropsychological evidence has been amassed to support the dual-route model of morphological processing, which distinguishes between a rule-based system for regular items (walk–walked, call–called) and an associative system for the irregular items (go–went). Some neural-network models attempt to explain the neuropsychological and brain-mapping dissociations in terms of single-system associative processing. We show that there are problems in the accounts of homogeneous networks in the light of recent brain-mapping evidence of systematic double-dissociation. We also examine the superior capabilities of more internally differentiated connectionist models, which, under certain conditions, display systematic double-dissociations. It appears that the more differentiation models show, the more easily they account for dissociation patterns, yet without implementing symbolic computations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flow control in Computer Communication systems is generally a multi-layered structure, consisting of several mechanisms operating independently at different levels. Evaluation of the performance of networks in which different flow control mechanisms act simultaneously is an important area of research, and is examined in depth in this thesis. This thesis presents the modelling of a finite resource computer communication network equipped with three levels of flow control, based on closed queueing network theory. The flow control mechanisms considered are: end-to-end control of virtual circuits, network access control of external messages at the entry nodes and the hop level control between nodes. The model is solved by a heuristic technique, based on an equivalent reduced network and the heuristic extensions to the mean value analysis algorithm. The method has significant computational advantages, and overcomes the limitations of the exact methods. It can be used to solve large network models with finite buffers and many virtual circuits. The model and its heuristic solution are validated by simulation. The interaction between the three levels of flow control are investigated. A queueing model is developed for the admission delay on virtual circuits with end-to-end control, in which messages arrive from independent Poisson sources. The selection of optimum window limit is considered. Several advanced network access schemes are postulated to improve the network performance as well as that of selected traffic streams, and numerical results are presented. A model for the dynamic control of input traffic is developed. Based on Markov decision theory, an optimal control policy is formulated. Numerical results are given and throughput-delay performance is shown to be better with dynamic control than with static control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing analytical models that can accurately describe behaviors of Internet-scale networks is difficult. This is due, in part, to the heterogeneous structure, immense size and rapidly changing properties of today's networks. The lack of analytical models makes large-scale network simulation an indispensable tool for studying immense networks. However, large-scale network simulation has not been commonly used to study networks of Internet-scale. This can be attributed to three factors: 1) current large-scale network simulators are geared towards simulation research and not network research, 2) the memory required to execute an Internet-scale model is exorbitant, and 3) large-scale network models are difficult to validate. This dissertation tackles each of these problems. ^ First, this work presents a method for automatically enabling real-time interaction, monitoring, and control of large-scale network models. Network researchers need tools that allow them to focus on creating realistic models and conducting experiments. However, this should not increase the complexity of developing a large-scale network simulator. This work presents a systematic approach to separating the concerns of running large-scale network models on parallel computers and the user facing concerns of configuring and interacting with large-scale network models. ^ Second, this work deals with reducing memory consumption of network models. As network models become larger, so does the amount of memory needed to simulate them. This work presents a comprehensive approach to exploiting structural duplications in network models to dramatically reduce the memory required to execute large-scale network experiments. ^ Lastly, this work addresses the issue of validating large-scale simulations by integrating real protocols and applications into the simulation. With an emulation extension, a network simulator operating in real-time can run together with real-world distributed applications and services. As such, real-time network simulation not only alleviates the burden of developing separate models for applications in simulation, but as real systems are included in the network model, it also increases the confidence level of network simulation. This work presents a scalable and flexible framework to integrate real-world applications with real-time simulation.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gap junction coupling is ubiquitous in the brain, particularly between the dendritic trees of inhibitory interneurons. Such direct non-synaptic interaction allows for direct electrical communication between cells. Unlike spike-time driven synaptic neural network models, which are event based, any model with gap junctions must necessarily involve a single neuron model that can represent the shape of an action potential. Indeed, not only do neurons communicating via gaps feel super-threshold spikes, but they also experience, and respond to, sub-threshold voltage signals. In this chapter we show that the so-called absolute integrate-and-fire model is ideally suited to such studies. At the single neuron level voltage traces for the model may be obtained in closed form, and are shown to mimic those of fast-spiking inhibitory neurons. Interestingly in the presence of a slow spike adaptation current the model is shown to support periodic bursting oscillations. For both tonic and bursting modes the phase response curve can be calculated in closed form. At the network level we focus on global gap junction coupling and show how to analyze the asynchronous firing state in large networks. Importantly, we are able to determine the emergence of non-trivial network rhythms due to strong coupling instabilities. To illustrate the use of our theoretical techniques (particularly the phase-density formalism used to determine stability) we focus on a spike adaptation induced transition from asynchronous tonic activity to synchronous bursting in a gap-junction coupled network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The brain is a network spanning multiple scales from subcellular to macroscopic. In this thesis I present four projects studying brain networks at different levels of abstraction. The first involves determining a functional connectivity network based on neural spike trains and using a graph theoretical method to cluster groups of neurons into putative cell assemblies. In the second project I model neural networks at a microscopic level. Using diferent clustered wiring schemes, I show that almost identical spatiotemporal activity patterns can be observed, demonstrating that there is a broad neuro-architectural basis to attain structured spatiotemporal dynamics. Remarkably, irrespective of the precise topological mechanism, this behavior can be predicted by examining the spectral properties of the synaptic weight matrix. The third project introduces, via two circuit architectures, a new paradigm for feedforward processing in which inhibitory neurons have the complex and pivotal role in governing information flow in cortical network models. Finally, I analyze axonal projections in sleep deprived mice using data collected as part of the Allen Institute's Mesoscopic Connectivity Atlas. After normalizing for experimental variability, the results indicate there is no single explanatory difference in the mesoscale network between control and sleep deprived mice. Using machine learning techniques, however, animal classification could be done at levels significantly above chance. This reveals that intricate changes in connectivity do occur due to chronic sleep deprivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context of image deblurring and medical image reconstruction. These problems have been addressed through iterative variational algorithms, which regularize the reconstruction by adding prior knowledge about the problem's solution. Despite the theoretical reliability of these methods, their practical utility is constrained by the time required to converge. Recently, the advent of neural networks allowed the development of reconstruction algorithms that can compute highly accurate solutions with minimal time demands. Regrettably, it is well-known that neural networks are sensitive to unexpected noise, and the quality of their reconstructions quickly deteriorates when the input is slightly perturbed. Modern efforts to address this challenge have led to the creation of massive neural network architectures, but this approach is unsustainable from both ecological and economic standpoints. The recently introduced GreenAI paradigm argues that developing sustainable neural network models is essential for practical applications. In this thesis, we aim to bridge the gap between theory and practice by introducing a novel framework that combines the reliability of model-based iterative algorithms with the speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our framework yields results comparable to state-of-the-art methods while using relatively small, sustainable models. In the first part of this thesis, we discuss the proposed framework from a theoretical perspective. We provide an extension of classical regularization theory, applicable in scenarios where neural networks are employed to solve inverse problems, and we show there exists a trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of our methods in common life science-related scenarios. In the second part of the thesis, we initiate an exploration extending the proposed method into the probabilistic domain. We analyze some properties of deep generative models, revealing their potential applicability in addressing ill-posed inverse problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presenti tesi ha come obiettivo lo studio di due algoritmi per il rilevamento di anomalie all' interno di grafi random. Per entrambi gli algoritmi sono stati creati dei modelli generativi di grafi dinamici in modo da eseguire dei test sintetici. La tesi si compone in una parte iniziale teorica e di una seconda parte sperimentale. Il secondo capitolo introduce la teoria dei grafi. Il terzo capitolo presenta il problema del rilevamento di comunità. Il quarto capitolo introduce possibili definizioni del concetto di anomalie dinamiche e il problema del loro rilevamento. Il quinto capitolo propone l' introduzione di un punteggio di outlierness associato ad ogni nodo sulla base del confronto tra la sua dinamica e quella della comunità a cui appartiene. L' ultimo capitolo si incentra sul problema della ricerca di una descrizione della rete in termini di gruppi o ruoli sulla base della quale incentrare la ricerca delle anomalie dinamiche.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Network airlines have been increasingly focusing their operations on hub airports through the exploitation of connecting traffic, allowing them to take advantage of economies of traffic density, which are unequivocal in the airline industry. Less attention has been devoted to airlines? decisions on point-to-point thin routes, which could be served using different aircraft technologies and different business models. This paper examines, both theoretically and empirically, the impact on airlines ?networks of the two major innovations in the airline industry in the last two decades: the regional jet technology and the low-cost business model. We show that, under certain circumstances, direct services on point-to-point thin routes can be viable and thus airlines may be interested in deviating passengers out of the hub.