963 resultados para NEGATIVE THERMAL-EXPANSION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Densities ([rho]) and viscosities ([eta]) of binary mixtures containing the Protic Ionic Liquid (PIL), pyrrolidinium octanoate with five molecular solvents: water, methanol, ethanol, n-butanol, and acetonitrile are determined at the atmospheric pressure as a function of the temperature and within the whole composition range. The refractive index of all mixtures (nD) is measured at 298.15†K. The excess molar volumes VE and deviation from additivity rules of viscosities [eta]E and refractive index [Delta][phi]n, of pyrrolidinium octanoate solutions were then deduced from the experimental results as well as apparent molar volumes V[phi]i, partial molar volumes and thermal expansion coefficients [alpha]p. The excess molar volumes VE are negative over the entire mole fraction range for mixture with water, acetonitrile, and methanol indicating strong hydrogen-bonding interaction for the entire mole fraction. In the case of longest carbon chain alcohols (such as ethanol and n-butanol)†+†pyrrolidinium octanoate solutions, the VE variation as a function of the composition describes an S shape. The deviation from additivity rules of viscosities is negative over the entire composition range for the acetonitrile, methanol, ethanol, and butanol, and becomes less negative with increasing temperature. Whereas, [eta]E of the {[Pyrr][C7CO2]†+†water} binary mixtures is positive in the whole mole fraction range and decreases with increasing temperature. the excess Gibbs free energies of activation of viscous flow ([Delta]G*E) for these systems were calculated. The deviation from additivity rules of refractive index [Delta][phi]n are positive over the whole composition range and approach a maximum of 0.25 in PIL mole fraction for all systems. The magnitude of deviation for [Delta][phi]n describes the following order: water†>†methanol†>†acetonitrile†>†ethanol. Results have been discussed in terms of molecular interactions and molecular structures in these binary mixtures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new series of nano-sized Ce1-xEuxCrO3 (x = 0.0 to 1.0) with an average particle size of 50 - 80 nm were synthesized using a solution combustion method. Nano-powders Ce1-xEuxCrO3 with the canted antiferromagnetic property exhibited interesting magnetic behaviours including the reversal magnetization and the exchange bias effect. The effect of europium doping as the ion with the smaller radius size and different electron con figuration on structural, magnetic and thermal properties of Ce1-xEuxCrO3 were investigated using various experimental techniques, i.e. DC/AC magnetic susceptibility, heat capacity, thermal expansion, Raman scattering, X-ray photoemission spectroscopy, transmission/scanning electron microscopy, X-ray powder diffraction and neutron scattering. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples confirmed the existence of the spin disorder magnetic phase in Ce1-xEuxCrO3 compounds. The exchange bias phenomenon, which is assigned to the exchange coupling between glassy-like shell and canted antiferromagnetic core, showed the opposite sign in CeCrO3 and EuCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. The energy level excitation of samples were examined by an inelastic neutron scattering which was in good agreement with the heat capacity data. Neutron scattering analysis of EuCrO3 was challenging due to the large neutron absorption cross-section of europium. All diffraction patterns of Ce1-xEuxCrO3 showed the magnetic peak attributed to the antiferromagnetic Cr3+ spins while none of the diffraction patterns could detect the magnetic ordering of the rare-earth ions in these samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees S, 42 degrees 08`W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 in s(-1), increases the atmospheric boundary layer in 214 in when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 in. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 in and 5.4 in for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts in Cabo Frio.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To combine the merits of both metals and ceramics into one material, many researchers have been studying the deposition of alumina coating using plasma spray on metal substrates. However, as the coatings are deposited at a high temperature, residual thermal stresses develop due to the mismatch of thermal expansion coefficients of the coating and substrate and these are responsible for the initiation and expansion of cracks, which induce the possible failure of the entire material. In this paper, the residual thermal-structural analysis of a Fe3Al/Al2O3 gradient coating on carbon steel substrate is performed using finite element modelling to simulate the plasma spray. The residual thermal stress fields are obtained and analyzed on the basis of temperature fields in gradient coatings during fabrication. The distribution of residual thermal stresses including radial, axial and shear stresses shows stress concentration at the interface between the coatings and substrate. The mismatch between steel substrate and composite coating is still the dominant factor for the residual stresses

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 °C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100 °C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 °C, whereas Rb- and Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100 °C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 × 10−5 K−1, 1.03 × 10−4 K−1, and 5.06 × 10−5 K−1, respectively. Rietveld structure refinements of the dehydrated phases at 400 °C reveal that the framework collapses are due to an increase of the chain rotation angles, ψ, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400 °C shows a 2.2-fold increase in ψ, whereas the dehydrated Rb- and Cs-natrolites at 400 °C reveal increases of ψ by ca. 3.7 and 7.3 times, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Cs-natrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work the thermal lens, thermal relaxation calorimetry and interferometric methods are applied to investigate the thermo-optical properties of tellurite glasses (in mol%: 80TeO(2)-20 Li2O(TeLi), 80TeO(2)-15Li(2)O-5TiO(2) (TeLiTi-5) and 80TeO(2)-10Li(2)O-10TiO(2) (TeLiTi-10)). Thermal diffusivity, thermal conductivity, specific heat and the temperature coefficients of refractive index, optical path length, thermal expansion and electronic polarizability were determined. The use of three independent methods was useful for a complete characterization of the studied tellurite glasses. In addition, our results showed that the thermal expansion coefficient and the temperature coefficient of the optical path length (dS/dT) were significantly modified with the introduction of titanium, which may be relevant for the application of these glasses in the photonic area. (c) 2006 Elsevier B.V. All rights reserved.