980 resultados para NAD -NADH redox potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of research-grade covellite was investigated in respirometric and growth experiments with Thiobacillus ferrooxidans. Covellite was directly oxidized by T. ferrooxidans in respirometric experiments, but the pH of mineral salts medium increased to prohibitively high values because of high sulfide concentrations. In glycine-H 2SO 4 buffered medium the pH remained steady and the oxygen uptake activity of T. ferrooxidans was not inhibited. In cultures growing with covellite as the sole source of energy, the pH increased to about 4. Redox potential increased to 500-600 mV during bacterial oxidation of covellite in the presence and absence of additional Fe 2+, whereas it remained mostly at about 350 mV in abiotic control. Jarosite was a major solid-phase product in T. ferrooxidans cultures. The solubilization of copper from covellite in inoculated flasks was higher than that obtained in control flasks and was not enhanced in the presence of additional Fe 2+.The sample also contained bornite (Cu 5FeS 4) which released iron in solution under all experimental conditions. Accumulation of S 0 was apparent only in inoculated covellite samples. © 1997 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to evaluate the acidic and biological leaching of tailings containing Ni/Cu from a flotation and smelting plant. Acidithiobacillus ferrooxidans, strain LR, was used for bioleaching at pH 1.8 and chemical controls were run parallel to that. The acidic leaching was done within 48 hours at pH 0.5 and 1.0. In the slag inoculated flasks the redox potential was high (600 mV), thus indicating oxidative bacterial activity, however, the obtained results after 15 days showed only around 13% Ni and 8% Cu extractions, which were not different to those of the controls. For the flotation tailings bioleaching extractions were approximately 45% for Ni and 16% for Cu while differing figures were obtained for the chemical controls. These were 30% and 12% respectively. Here we could observe that the presence of bacterial activity led to a higher solubility of Ni. Acid leaching of slag showed higher nickel and copper extractions: 56% and 24% respectively at pH 0.5 and 21% and 11% at pH 1.0. However, the acid consumption was 320 and 150 Kg/ton of slag, respectively, both much higher than in bacterial assays. These results indicated that Ni and Cu solubilization from the slag is acid dependent no matter the redox potential or ferric iron concentration of the leaching solution. For flotation tailings, acid treatment showed extractions of 23% for Ni and 16% for copper at pH 0.5 and 22% and 28%, respectively at pH 1.0. The acid consumption was also higher: 220 and 120 Kg/ton, at pH 0.5 and 1.0, respectively. Based on own findings we could observe that acid leaching is found to be more effective for slag, though the acid consumption is much higher, while for the flotation tailings, bacterial leaching seems to be the best alternative. © (2009) Trans Tech Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring of soil carbon storage may indicate possible effects of climate change on the terrestrial environment and it is therefore necessary to understand the influence of redox potential and chemical characteristics of humic substances (HS) of Antarctic soil. Five soils from King George Island were used. HS were extracted, quantified and characterized by potentiometry and the content of total carbon and nitrogen determined. HS of these soils had greater aliphatic character, low content of phenolic groups, lower acidity and lower formal standard electrode potential, compared to HS of soils from other regions, suggesting they are more likely to be oxidized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present an electrochemical study using carbon paste electrode (CPE) with CuFeS2 in solutions with different concentrations of Fe2+ ions in order to evaluate the possible interaction between these ions and mineral sulfide in the absence and presence of the bacteria Acidithiobacillus ferroxidans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of the habitat-modifying green algae Caulerpa taxifolia on meiobenthic communities along the coast of New South Wales, Australia. Samples were taken from unvegetated sediments, sediments underneath the native seagrass Zostera capricorni, and sediments invaded by C. taxifolia at 3 sites along the coast. Meiofaunal responses to invasion varied in type and magnitude depending on the site, ranging from a slight increase to a substantial reduction in meiofauna and nematode abundances and diversity. The multivariate structure of meiofauna communities and nematode assemblages, in particular, differed significantly in sediments invaded by C. taxifolia when compared to native habitats, but the magnitude of this dissimilarity differed between the sites. These differential responses of meiofauna to C. taxifolia were explained by different sediment redox potentials. Sediments with low redox potential showed significantly lower fauna abundances, lower numbers of meiofaunal taxa and nematode species and more distinct assemblages. The response of meiofauna to C. taxifolia also depended on spatial scale. Whereas significant loss of benthic biodiversity was observed locally at one of the sites, at the larger scale C. taxifolia promoted an overall increase in nematode species richness by favouring species that were absent from the native environments. Finally, we suggest there might be some time-lags associated with the impacts of C. taxifolia and point to the importance of considering the time since invasion when evaluating the impact of invasive species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.