119 resultados para N-acetylcysteine lysinate
Resumo:
Histone deacetylase inhibitors (HDACi) are anti-cancer drugs that primarily act upon acetylation of histones, however they also increase levels of intracellular reactive oxygen species (ROS). We hypothesized that agents that cause oxidative stress might enhance the efficacy of HDACi. To test this hypothesis, we treated acute lymphocytic leukemia cells (ALL) with HDACi and adaphostin (ROS generating agent). The combination of two different HDACi (vorinostat or entinostat) with adaphostin synergistically induced apoptosis in ALL. This synergistic effect was blocked when cells were pre-treated with the caspase-9 inhibitor, LEHD. In addition, we showed that loss of the mitochondrial membrane potential is the earliest event observed starting at 12 h. Following this event, we observed increased levels of superoxide at 16 h, and ultimately caspase-3 activation. Pre-treatment with the antioxidant N-acetylcysteine (NAC) blocked ROS generation and reversed the loss of mitochondrial membrane potential for both combinations. Interestingly, DNA fragmentation and caspase-3 activity was only blocked by NAC in cells treated with vorinostat-adaphostin; but not with entinostat-adaphostin. These results suggest that different redox mechanisms are involved in the induction of ROS-mediated apoptosis. To further understand these events, we studied the role of the antioxidants glutathione (GSH) and thioredoxin (Trx). We found that the combination of entinostat-adaphostin induced acetylation of the antioxidant thioredoxin (Trx) and decreased intracellular levels of GSH. However, no effect on Trx activity was observed in either combination. In addition, pre-treatment with GSH ethyl ester, a soluble form of GSH, did not block DNA fragmentation. Together these results suggested that GSH and Trx are not major players in the induction of oxidative stress. Array data examining the expression of genes involved in oxidative stress demonstrated a differential regulation between cells treated with vorinostat-adaphostin and entinostat-adaphostin. Some of the genes differentially expressed between the combinations include aldehyde oxidase 1, glutathione peroxidase-5, -6, peroxiredoxin 6 and myeloperoxidase. Taken together, these experimental results indicate that the synergistic activity of two different HDACi with adaphostin is mediated by distinct redox mechanisms in ALL cells. Understanding the mechanism involved in these combinations will advance scientific knowledge of how the action of HDACi could be augmented in leukemia models. Moreover, this information could be used for the development of effective clinical trials combining HDACi with other anticancer agents.
Resumo:
One of the important mechanisms of immunosuppression in the tumor-bearing status has been attributed to the down-modulation of the CD3 ζ chain and its associated signaling molecules in T cells. Thus, the mechanism of the disappearance of CD3ζ was investigated in tumor-bearing mice (TBM). The decrease of CD3ζ was observed both in the cell lysate and intact cells. Direct interaction of T cells with macrophages from TBM (TBM-macrophages) induced the decrease of CD3ζ, and depletion of macrophages rapidly restored the CD3ζ expression. We found that treatment of such macrophages with N-acetylcysteine, known as antioxidant compound, prevented the decrease of CD3ζ. Consistent with this result, the addition of oxidative reagents such as hydrogen peroxide and diamide induced the decrease of CD3ζ expression in T cells. Consequently, the loss of CD3ζ resulted in suppression of the antigen-specific T-cell response. These results demonstrate that oxidative stress by macrophages in tumor-bearing status induces abnormality of the T-cell receptor complex by cell interactions with T cells. Therefore, our findings suggest that oxidative stress contributes to the regulation of the expression and function of the T-cell receptor complex.
Resumo:
Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.
Resumo:
Glutathione (GSH) is a major source of reducing equivalents in mammalian cells. To examine the role of GSH synthesis in development and cell growth, we generated mice deficient in GSH by a targeted disruption of the heavy subunit of γ-glutamylcysteine synthetase (γGCS-HStm1), an essential enzyme in GSH synthesis. Embryos homozygous for γGCS-HStm1 fail to gastrulate, do not form mesoderm, develop distal apoptosis, and die before day 8.5. Lethality results from apoptotic cell death rather than reduced cell proliferation. We also isolated cell lines from homozygous mutant blastocysts in medium containing GSH. These cells also grow indefinitely in GSH-free medium supplemented with N-acetylcysteine and have undetectable levels of GSH; further, they show no changes in mitochondrial morphology as judged by electron microscopy. These data demonstrate that GSH is required for mammalian development but dispensable in cell culture and that the functions of GSH, not GSH itself, are essential for cell growth.
Resumo:
gamma-Glutamyl transpeptidase (GGT) is an ectoenzyme that catalyzes the first step in the cleavage of glutathione (GSH) and plays an essential role in the metabolism of GSH and GSH conjugates of carcinogens, toxins, and eicosanoids. To learn more about the role of GGT in metabolism in vivo, we used embryonic stem cell technology to generate GGT-deficient (GGTm1/GGTm1) mice. GGT-deficient mice appear normal at birth but grow slowly and by 6 weeks are about half the weight of wild-type mice. They are sexually immature, develop cataracts, and have coats with a gray cast. Most die between 10 and 18 weeks. Plasma and urine GSH levels in the GGTm1/GGTm1 mice are elevated 6-fold and 2500-fold, respectively, compared with wild-type mice. Tissue GSH levels are markedly reduced in eye, liver, and pancreas. Plasma cyst(e)ine levels in GGTm1/GGTm1 mice are reduced to approximately 20% of wild-type mice. Oral administration of N-acetylcysteine to GGTm1/GGTm1 mice results in normal growth rates and partially restores the normal agouti coat color. These findings demonstrate the importance of GGT and the gamma-glutamyl cycle in cysteine and GSH homeostasis.
Resumo:
The activation of nuclear factor (NF)-kappaB by 12(R)-hydroxyeicosatrienoic acid [12(R)-HETrE], an arachidonic acid metabolite with potent stereospecific proinflammatory and angiogenic properties, was examined and its role in the angiogenic response was determined in capillary endothelial cells derived from coronary microvessels. Electrophoretic mobility-shift assay of nuclear protein extracts from cells treated with 12(R)-HETrE demonstrated a rapid and stereospecific time- and concentration-dependent increase in the binding activity of NF-kappaB, which was inhibitable by the antioxidants N-acetylcysteine, butylated hydroxyanisole, and pyrrolidine dithiocarbamate and was partially attenuated by the protein kinase C inhibitors, staurosporine and calphostin C. Neither 12(S)-HETrE nor other related eicosanoids--e.g., 12(R)-HETE, 12(S)-HETE, and leukotriene B4--stimulated the activation of NF-kappaB relative to 12(R)-HETrE, substantiating the claim for a specific receptor-mediated mechanism. 12(R)-HETrE stimulated the formation of capillary-like cords of microvessel endothelial cells distinguishable from a control; this effect was comparable to that observed with basic fibroblast growth factor (bFGF). Inhibition of NF-kappaB activation resulted in inhibition of capillary-like formation of endothelial cells treated with 12(R)-HETrE by 80% but did not affect growth observed with bFGF. It is suggested that 12(R)-HETrE's angiogenic activity involves the activation of NF-kappaB, possibly via protein kinase C stimulation and the generation of reactive oxygen intermediates for downstream signaling.
Resumo:
A plethora of extracellular signals is known to induce a common set of immediate early genes. The immediate early response, therefore, must not be sufficient to determine the biological outcome. An example of this is found with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). A potent activator of protein kinase C, TPA can either stimulate or inhibit cell proliferation, depending on the cell type. This cell context-dependent response to TPA is observed with two subclones of NIH 3T3 cells, the P- and the N-3T3 clones. TPA is a mitogen for the P-3T3 but an antimitogen for the N-3T3 cells. The immediate early pathway is activated by TPA in both cell types, indicating that this pathway alone does not activate DNA synthesis. The delayed induction of cyclin D1 expression by TPA is observed only in the P-3T3 cells, correlating with mitogenesis. N-Acetylcysteine does not affect the immediate early pathway but can inhibit the TPA-mediated induction of cyclin D1 and DNA synthesis. In the N-3T3 cells, TPA causes an inhibition of the cyclin E-associated kinase at the G1/S transition, correlating with growth inhibition. The growth-inhibitory activity of TPA is not affected by N-acetylcysteine. Thus, the two TPA-regulated G1 pathways can be distinguished by their sensitivity to N-acetylcysteine. These results demonstrate that TPA can activate alternative G1 pathways. Moreover, the selection of the alternative G1 pathways is determined by the cell context, which, in turn, dictates the biological response to TPA.
Resumo:
La voie de signalisation des phosphoinositides joue un rôle clé dans la régulation du tonus vasculaire. Plusieurs études rapportent une production endogène de l’angiotensin II (Ang II) et de l’endothéline-1 (ET-1) par les cellules musculaires lisses vasculaires (CMLVs) de rats spontanément hypertendus (spontaneously hypertensive rats : SHR). De plus, l’Ang II exogène induit son effet prohypertrophique sur les CMLVs selon un mécanisme dépendant de la protéine Gqα et de la PKCẟ. Cependant, le rôle de l’axe Gqα/PLCβ/PKCẟ dans l’hypertrophie des CMLVs provenant d’un modèle animal de l’hypertension artérielle n’est pas encore étudié. L’objectif principal de cette thèse est d’examiner le rôle de l’axe Gqα/PLCβ1 dans les mécanismes moléculaires de l’hypertrophie des CMLVs provenant d’un modèle animal d’hypertension artérielle essentielle (spontaneously hypertensive rats : SHR). Nos premiers résultats indiquent que contrairement aux CMLVs de SHR âgés de 12 semaines (absence d’hypertrophie cardiaque), les CMLVs de SHR âgés de 16 semaines (présence d’hypertrophie cardiaque) présentent une surexpression protéique endogène de Gqα et de PLCβ1 par rapport aux CMLVs de rats WKY appariés pour l’âge. L’inhibition du taux d’expression protéique de Gqα et de PLCβ1 par des siRNAs spécifiques diminue significativement le taux de synthèse protéique élevé dans les CMLVs de SHR. De plus, la surexpression endogène des Gqα et PLCβ1, l’hyperphosphorylation de la molécule ERK1/2 et le taux de synthèse protéique élevé dans les CMLVs de SHR de 16 semaines ont été atténués significativement par des antagonistes des récepteurs AT1 (losartan) et ETA (BQ123), mais pas par l’antagoniste du récepteur ETB (BQ788). L’inhibition pharmacologique des MAPKs par PD98059 diminue significativement la surexpression endogène de Gqα/PLCβ1 et le taux de synthèse protéique élevé dans les CMLVs de SHR. D’un côté, l’inhibition du stress oxydatif (par DPI, inhibiteur de la NAD(P)H oxidase, et NAC , molécule anti-oxydante), de la molécule c-Src (PP2) et des récepteurs de facteurs de croissance (AG1024 (inhibiteur de l’IGF1-R), AG1478 (inhibiteur de l’EGFR) et AG1295 (inhibiteur du PDGFR)) a permis d’atténuer significativement la surexpression endogène élevée de Gqα/PLCβ1 et l’hypertrophie des CMLVs de SHR. D’un autre côté, DPI, NAC et PP2 atténuent significativement l’hyperphosphorylation de la molécule c-Src, des RTKs (récepteurs à activité tyrosine kinase) et de la molécule ERK1/2. Dans une autre étude, nous avons aussi démontré que la PKCẟ montre une hyperphosphorylation en Tyr311 dans les CMLVs de SHR comparées aux CMLVs de WKY. La rottlerin, utilisée comme inhibiteur spécifique de la PKCẟ, inhibe significativement cette hyperphosphorylation en Tyr311 dépendamment de la concentration. L’inhibition de l’activité de la PKCẟ par la rottlerin a été aussi associée à une atténuation significative de la surexpression protéique endogène de Gqα/PLCβ1 et l’hypertrophie des CMLVs de SHR. De plus, l’inhibition pharmacologique de l’activité de la PKCẟ, en amont du stress oxydatif, a permis d’inhiber significativement l’activité de la NADPH, le taux de production élevée de l’ion superoxyde ainsi que l’hyperphosphorylation de la molécule ERK1/2, de la molécule c-Src et des RTKs. À notre surprise, nous avons aussi remarqué une surexpression protéique de l’EGFR et de l’IGF-1R dans les CMLVs de SHR à l’âge de 16 semaines. L’inhibition pharmacologique de l’activité de la PKCẟ, de la molécule c-Src et du stress oxydatif a permis d’inhiber significativement la surexpression protéique endogène de ces RTKs. De plus, l’inhibition de l’expression protéique de l’EGFR et de la molécule c-Src par des siRNA spécifiques atténue significativement le taux d’expression protéique élevé de Gqα et de PLCβ1 ainsi que le taux de synthèse protéique élevé dans les CMLVs de SHR. Des siRNAs spécifiques à la PKCẟ ont permis d’atténuer significativement le taux de synthèse protéique élevé dans les CMLVs de SHR et confirment le rôle important de la PKCẟ dans les mécanismes moléculaires de l’hypertrophie des CMLVs selon une voie dépendante du stress oxydatif. En conclusion, ces résultats suggèrent un rôle important de l’activation endogène de l’axe Gqα-PLCβ-PKCẟ dans le processus d’hypertrophie vasculaire selon un mécanisme impliquant une activation endogène des récepteurs AT1/ETa, de la molécule c-Src, du stress oxidatif, des RTKs et des MAPKs.
Resumo:
1. The mechanism of action by which methotrexate (MTX) exerts its anti-inflammatory and immunosuppressive effects remains unclear. The aim of this study is to investigate the hypothesis that MTX exerts these effects via the production of reactive oxygen species (ROS). 2. Addition of MTX (100 nM-10 μM) to U937 monocytes induced a time and dose dependent increase in cytosolic peroxide [peroxide] cyt from 6-16 h. MTX also caused corresponding monocyte growth arrest, which was inhibited (P<0.05) by pre-treatment with N-acetylcysteine (NAC; 10 mM) or glutathione (GSH; 10 mM). In contrast, MTX induction of [peroxide] cyt in Jurkat T cells was more rapid (4 h; P<0.05), but was associated with significant apoptosis at 16 h at all doses tested (P<0.05) and was significantly inhibited by NAC or GSH (P<0.05). 3. MTX treatment of monocytes (10 nM-10 μM) for 16 h significantly reduced total GSH levels (P<0.05) independently of dose (P>0.05). However in T-cells, GSH levels were significantly elevated following 30 nM MTX treatment (P<0.05) but reduced by doses exceeding 1 μM compared to controls (P<0.05). 4. MTX treatment significantly reduced monocyte adhesion to 5 h and 24 h LPS (1 μg ml -1) activated human umbilical vein endothelial cells (HUVEC; P<0.05) but not to resting HUVEC. Pre-treatment with GSH prevented MTX-induced reduction in adhesion. 5. In conclusion, ROS generation by MTX is important for cytostasis in monocytes and cytotoxicity T-cells. Furthermore, MTX caused a reduction in monocyte adhesion to endothelial cells, where the mechanism of MTX action requires the production of ROS. Therefore its clinical efficacy can be attributed to multiple targets.
Resumo:
In the introduction a brief outline of the possible mechanisms involved in the process of cellular necrosis with particular emphasis on skeletal muscle necrosis after antiChE is discussed. Ecothiopate (ECO), an antiChE, was shown to produce dose-dependent inhibition of both AChE and BuChE in diaphragm and blood of mice. Inhibition of AChE resulted in dose-dependent influx of calcium at the junctional region with the consequent development of morphological and biochemical alterations. Non-necrotising doses of ECO caused hypercontractions of varying severity, distorted end plate and slight elevation of serum creatine kinase (CK). Necrotising doses of ECO further caused contraction clumps, loss of striations and procion staining with high serum CK. The extent of ECO-induced myopathy depended on entry of extracellular calcium rather than the degree of AChE inhibition. The essential Ca2+ mediated process(es) in ECO-induced myopathy was thought to be the generation of superoxide and superoxide-derived free radicals and/or lipid peroxidation. Mitochondria and xanthine oxidase may be the major contributors to the generation of superoxide. No evidence was found for the depletion of high energy phosphates. ECO-induced myopathy could be successfully prevented by prior administration of pyridostigmine or various antioxidants, the most effective being Vit E or Vit E + N-acetylcysteine. Allopurinol or N-acetylcysteine alone were also effective. However, the use of a wide range of membrane end plate channel blockers or non-quantal release blockers were unsuccessful in the prevention of ECO-induced myopathy.
Resumo:
The nasal absorption of larger peptide and protein drugs is generally low. The importance of the mucus layer and enzymic degradation in reducing absorption were investigated. Reversed-phase high-performance liquid chromatographic (HPLC) methods were developed to assay a variety of compounds. Pig gastric mucus (PGM) was selected to investigate the importance of the mucus layer. A method of treating and storing PGM was developed and evaluated which was representative of the gel in vivo. The nature of the mucus barrier was evaluated in vitro with three-compartment diffusion cells and a series of compounds with differing physicochemical properties. Mucus retarded the diffusion of all the compounds with molecular weight and charge exerting a marked effect. Binding to mucus was investigated by a centrifugation method. All of the compounds tested were found to bind to mucus with the exception of the negatively charged molecule benzoic acid. The small peptides did not demonstrate greater binding to mucus than any of the other compounds evaluated. The effect of some absorption enhancers upon the rate of diffusion of tryptophan through mucus was determined in vi tro. At the concentrations employed the enhancers EDTA, N-acetylcysteine and taurodeoxycholic acid exerted no effect, whilst taurocholic acid and cholic acid, were found to slightly reduce the rate of diffusion. The intracellular and luminal proteolytic activity of the nose was investigated in the sheep animal model with a nasal mucosal homogenate and a nasal wash preparation respectively and a series of chemically similar peptides. Hydrolysis was also investigated with the proteolytic enzymes carboxypeptidase A, cytosolic leucine aminopeptidase and microsomal leucine aminopeptidase. Sheep nasal mucosa possesses significant peptide hydrolase activity capable of degrading all the substrates tested. Considerable variation in susceptibility was observed. Degradation occurred excl us i ve ly at the pept ide bond between the aromatic amino ac id and glycine, indicating some specificity for aromatic amino acids. Hydrolysis profiles indicated the presence of both aminopeptidase and carboxypeptidase enzymes. The specific activity of the microsomal fraction was found to be greater than the cytosolic fraction. Hydrolysis in the nasal wash indicated the presence of either luminal or loosely-bound proteases, which can degrade peptide substrates. The same specificity for aromatic amino acids was observed and aminopeptidase activity demonstrated. The specific activity of the nasal wash was smaller than that of the homogenate.
Resumo:
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.
Resumo:
Wydział Chemii
Resumo:
Purpose: To investigate the potential protective effect of oral repeated doses of thearubigins against acetaminophen-induced hepatotoxicity in mice. Methods: Mice were randomly divided into six groups (n=8) and administered the following: Control group (saline), acetaminophen group (saline), N-acetylcysteine group (500 mg/kg/day), and thearubigins groups (60, 70, 100 mg/kg/day). The drugs were given orally by gavage for seven days. On day 7, 1 h after the last dose of treatment, the mice (except control group) were given a single dose of acetaminophen (n-acetyl-p-aminophenol, APAP) orally by gavage (350 mg/kg) and then sacrificed 4 h post-APAP intake. Blood was collected for biochemical measurements and their liver were subjected to biochemical and histopathological assessment. Results: The acetaminophen group showed significant increases (p < 0.001) in serum alanine aminotransferase level, hepatic cytochrome P2E1 level, and serum and hepatic malondialdehyde levels. Moreover it showed significant decrease (p < 0.001) in serum and hepatic glutathione levels. Morphologically, the liver sections showed cellular necrosis, vacuolization, and degeneration around the centrilobular veins. Pretreatment with N-acetylcysteine reversed all acetaminophen-induced changes (p < 0.001 for all biomarkers except for hepatic MDA (p = 0.014) while pretreatment with thearubigins failed to reverse any of them. Conclusion: Oral repeated doses of thearubigins failed to protect against acetaminophen-induced hepatotoxicity in mice and didn\'t affect hepatic cytochrome P2E1 level.