952 resultados para Myocytes, Smooth Muscle
Resumo:
BACKGROUND AND PURPOSE: Diabetes mellitus (DM) causes multiple dysfunctions including circulatory disorders such as cardiomyopathy, angiopathy, atherosclerosis and arterial hypertension. Rho kinase (ROCK) and protein kinase C (PKC) regulate vascular smooth muscle (VSM) Ca(2+) sensitivity, thus enhancing VSM contraction, and up-regulation of both enzymes in DM is well known. We postulated that in DM, Ca(2+) sensitization occurs in diabetic arteries due to increased ROCK and/or PKC activity. EXPERIMENTAL APPROACH: Rats were rendered hyperglycaemic by i.p. injection of streptozotocin. Age-matched control tissues were used for comparison. Contractile responses to phenylephrine (Phe) and different Ca(2+) concentrations were recorded, respectively, from intact and chemically permeabilized vascular rings from aorta, tail and mesenteric arteries. KEY RESULTS: Diabetic tail and mesenteric arteries demonstrated markedly enhanced sensitivity to Phe while these changes were not observed in aorta. The ROCK inhibitor HA1077, but not the PKC inhibitor chelerythrine, caused significant reduction in sensitivity to agonist in diabetic vessels. Similar changes were observed for myofilament Ca(2+) sensitivity, which was again enhanced in DM in tail and mesenteric arteries, but not in aorta, and could be reduced by both the ROCK and PKC blockers. CONCLUSIONS AND IMPLICATIONS: We conclude that in DM enhanced myofilament Ca(2+) sensitivity is mainly manifested in muscular-type blood vessels and thus likely to contribute to the development of hypertension. Both PKC and, in particular, ROCK are involved in this phenomenon. This highlights their potential usefulness as drug targets in the pharmacological management of DM-associated vascular dysfunction.
Resumo:
Skin kininogens from bombinid toads encode an array of bradykinin-related peptides and one such kininogen from Bombina maxima also encodes the potent bradykinin B2-receptor antagonist, kinestatin. In order to determine if the skin secretion of the closely-related toad, Bombina orientalis, contained a bradykinin inhibitory peptide related to kinestatin, we screened reverse phase HPLC fractions of defensive skin secretion using a rat tail artery smooth muscle preparation. A fraction was located that inhibited bradykinin-induced relaxation of the preparation and this contained a peptide of 3198.5 Da as determined by MALDI-TOF MS. Automated Edman degradation of this peptide established the identity of a 28-mer as: DMYEIKGFKSAHGRPRVCPPGEQCPIWV, with a disulfide-bridge between Cys18 and Cys24 and an amidated C-terminal Val residue. Peptide DV-28 was found to correspond to residues 133–160 of skin pre-kininogen-2 of B. orientalis that also encodes two copies of (Thr6)-bradykinin. The C-terminal residue, Gly-161, of the precursor open-reading frame, acts as the C-terminal amide donor of mature DV-28. DV-28 amide thus represents a new class of bradykinin inhibitor peptide from amphibian skin secretion.
Resumo:
Here we report the primary structure of a novel peptide, named helokinestatin-5 (VPPPLQMPLIPR), from the venom of the Gila monster (Heloderma suspectum). Helokinestatin-5 differs in structure from helokinestatin-3 by deletion of a single prolyl residue in the N-terminally located polyproline region. Two different biosynthetic precursors were consistently cloned from a venom-derived cDNA library. The first encoded helokinestatins 1–4 and a single copy of C-type natriuretic peptide, as previously described, whereas the second was virtually identical, lacking only a single prolyl codon as found in the mature attenuated helokinestatin-5 peptide. Helokinestatins 1–3 and 5 were synthesized by solid-phase fmoc chemistry and each synthetic replicate was found to antagonize the relaxation effect induced by bradykinin on rat tail artery smooth muscle. Helokinestatins thus represent a novel family of vasoactive peptides from the venom of helodermatid lizards
Resumo:
Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.
Resumo:
AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.
METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.
RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.
CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.
Resumo:
The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.