122 resultados para Myoblasts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signals that determine fast- and slow-twitch phenotypes of skeletal muscle fibers are thought to stem from depolarization, with concomitant contraction and activation of calcium-dependent pathways. We examined the roles of contraction and activation of calcineurin (CN) in regulation of slow and fast myosin heavy chain (MHC) protein expression during muscle fiber formation in vitro. Myotubes formed from embryonic day 21 rat myoblasts contracted spontaneously, and ∼10% expressed slow MHC after 12 d in culture, as seen by immunofluorescent staining. Transfection with a constitutively active form of calcineurin (CN*) increased slow MHC by 2.5-fold as determined by Western blot. This effect was attenuated 35% by treatment with tetrodotoxin and 90% by administration of the selective inhibitor of CN, cyclosporin A. Conversely, cyclosporin A alone increased fast MHC by twofold. Cotransfection with VIVIT, a peptide that selectively inhibits calcineurin-induced activation of the nuclear factor of activated T-cells, blocked the effect of CN* on slow MHC by 70% but had no effect on fast MHC. The results suggest that contractile activity-dependent expression of slow MHC is mediated largely through the CN–nuclear factor of activated T-cells pathway, whereas suppression of fast MHC expression may be independent of nuclear factor of activated T-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agrin is a basal lamina molecule that directs key events in postsynaptic differentiation, most notably the aggregation of acetylcholine receptors (AChRs) on the muscle cell surface. Agrin's AChR clustering activity is regulated by alternative mRNA splicing. Agrin splice forms having inserts at two sites (y and z) in the C-terminal region are highly active, but isoforms lacking these inserts are weakly active. The biochemical consequences of this alternative splicing are unknown. Here, the binding of four recombinant agrin isoforms to heparin, to alpha-dystroglycan (a component of an agrin receptor), and to myoblasts was tested. The presence of a four-amino acid insert at the y site is necessary and sufficient to confer heparin binding ability to agrin. Moreover, the binding of agrin to alpha-dystroglycan is inhibited by heparin when this insert is present. Agrin binding to the cell surface showed analogous properties: heparin inhibits the binding of only those agrin isoforms containing this four-amino acid insert. The results show that alternative splicing of agrin regulates its binding to heparin and suggest that agrin's interaction with alpha-dystroglycan may be modulated by cell surface glycosaminoglycans in an isoform-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MEF2 (myocyte-specific enhancer factor 2) is a MADS box transcription factor that is thought to be a key regulator of myogenesis in vertebrates. Mutations in the Drosophila homologue of the mef2 gene indicate that it plays a key role in regulating myogenesis in Drosophila. We show here that the Drosophila tropomyosin I (TmI) gene is a target gene for mef2 regulation. The TmI gene contains a proximal and a distal muscle enhancer within the first intron of the gene. We show that both enhancers contain a MEF2 binding site and that a mutation in the MEF2 binding site of either enhancer significantly reduces reporter gene expression in embryonic, larval, and adult somatic body wall muscles of transgenic flies. We also show that a high level of proximal enhancer-directed reporter gene expression in somatic muscles requires the cooperative activity of MEF2 and a cis-acting muscle activator region located within the enhancer. Thus, mef2 null mutant embryos show a significant reduction but not an elimination of TmI expression in the body wall myoblasts and muscle fibers that are present. Surprisingly, there is little effect in these mutants on TmI expression in developing visceral muscles and dorsal vessel (heart), despite the fact that MEF2 is expressed in these muscles in wild-type embryos, indicating that TmI expression is regulated differently in these muscles. Taken together, our results show that mef2 is a positive regulator of tropomyosin gene transcription that is necessary but not sufficient for high level expression in somatic muscle of the embryo, larva, and adult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ERK6, a mitogen-activated protein (MAP) kinase-related serine/threonine kinase, is highly expressed in human skeletal muscle and appears to function as a signal transducer during differentiation of myoblasts to myotubes. In transfected 293 cells, activation of the 45-kDa enzyme results in tyrosine-phosphorylated 46- and 56-kDa forms, which phosphorylate myelin basic protein. Overexpression of wild-type ERK6 or the inactive mutant Y185F has no effect on fibroblast and myoblast proliferation, but it enhances or inhibits C2C12 cell differentiation to myotubes, respectively. Our findings suggest ERK6 to be a tissue-specific, differentiation signal-transducing factor that is connected to phosphotyrosine-mediated signaling pathways distinct from those activating other members of the MAP kinase family such as LRK1 and ERK2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has long been maintained that the ciliary muscle derives from mesenchymal cells. The embryonic development of the avian ciliary muscle was studied in chick embryos from stage 25 HH to the time of hatching. Serial sections of the eye were stained routinely or immunocytochemically using the monoclonal antibody 13F4, which recognizes a cytoplasmic antigen specific for all types of muscle cells. We found that the mesenchymal immunoreactive cells, at stage 37 HH, are arranged in two distinct orientations forming the anterior and posterior portions of the ciliary muscle. At stages 38 and 39 HH the pigmented epithelium contained 13F4 positive cells, which detach from the epithelium and apparently migrate into stroma. These epithelial cells may differentiate into muscle cells. Within this same time period a progressive accumulation of myoblasts was detected between the pigmented epithelium and the ciliary muscle. Some myoblasts containing melanin were also observed. At stage 40 HH the internal portion of the ciliary muscle was visible. These findings indicate that the immunopositive epithelial cells participate in the formation of the internal portion of the muscle. We conclude that the ciliary muscle derives not only from the mesenchymal cells but also from the pigmented epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF) is a sulfated glycoprotein produced by cachexia-inducing tumors, which induces atrophy of skeletal muscle. PIF has been shown to bind specifically with high affinity (Kd, in nanomolar) to sarcolemma membranes from skeletal muscle of both the mouse and the pig, as well as murine myoblasts and a human muscle cell line. Ligand binding was abolished after enzymatic deglycosylation, suggesting that binding was mediated through the oligosaccharide chains in PIF. Chondroitin sulfate, but not heparan or dermatan sulfate, showed competitive inhibition (Kd, 1.1 × 10-7 mol/L) of binding of PIF to the receptor, suggesting an interaction with the sulfated oligosaccharide chains. Ligand blotting of [ 35S]PIF to triton solublized membranes from C2C 12 cells provided evidence for a binding protein of apparent M r of ∼40,000. Amino acid sequence analysis showed the PIF receptor to be a DING protein. Antisera reactive to a 19mer from the N-terminal amino acid residues of the binding protein attenuated protein degradation and activation of the ubiquitin-proteasome pathway induced by PIF in murine myotubes. In addition, the antisera was highly effective in attenuating the decrease in body weight in mice bearing the MAC16 tumor, with a significant increase in muscle wet weight due to an increase in the rate of protein synthesis, together with a reduction in protein degradation through attenuation of the increased proteasome expression and activity. These results confirm that the PIF binding protein has a functional role in muscle protein atrophy in cachexia and that it represents a potential new therapeutic target. ©2007 American Association for Cancer Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin-proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα, proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin-proteasome pathway, as determined by 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSSI and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin-proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB. © 2005 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the 'chymotrypsin-like' enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia. © 2002 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of murine myoblasts, myotubes and tumour cells with a tumour-produced lipid mobilizing factor (LMF), caused a concentration-dependent stimulation of protein synthesis, within a 24 h period. There was no effect on cell number or [3H] thymidine incorporation, but a similar concentration-dependent stimulation of 2-deoxyglucose uptake. LMF produced an increase in intracellular cyclic AMP levels, which was linearly (r2 = 0.973) related to the increase in protein synthesis. The effect of LMF was attenuated by the adenylate cyclase inhibitor MDL12330A, and was additive with the stimulation produced by forskolin. Both propranolol (10 μM) and the specific β3-adrenergic receptor antagonist SR 59230A (10-5M), significantly reduced the stimulation of protein synthesis induced by LMF. Protein synthesis was also increased by 69% (P = 0.006) in soleus muscles of mice administered LMF, while there was a 26% decrease in protein degradation (P = 0.03). While LMF had no effect on the lysosomal enzymes, cathepsins B and L, there was a decrease in proteasome activity, as determined both by the 'chymotrypsin-like' enzyme activity, as well as expression of proteasome α-type subunits, determined by Western blotting. These results show that in addition to its lipid-mobilizing activity LMF also increases protein accumulation in skeletal muscle both by an increase in protein synthesis and a decrease in protein catabolism. © 2001 Cancer Research Campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia encompases severe weight loss, characterised by the debilitating atrophy of adipose and skeletal muscle mass. Skeletal muscle proteolysis in cancer cachexia is mediated by a sulphated glycoprotein with a relative molecular mass of 24kDa, termed Proteolysis-Inducing Factor (PIF). PIF induced a significant increase in protein degradation, peaking at 4.2nM PIF (p<0.001), ‘chymotrypsin-like’ activity of the proteasome (p<0.001) and increased expression of components of the ATP-ubiquitin dependent proteolytic pathway. This was attenuated in vitro by pre-incubation with the PKC inhibitor calphostin C (100µM) and NF-kB the inhibitors SN50 (18µM), curcumin (50µM) and resveratrol (30µM), 2 hours prior to the addition of PIF. In vivo studies found the IKK inhibitor resveratrol (1mg/kg) to be successful in attenuating protein degradation (p<0.001) and upregulation of ubiquitin-dependent proteolysis in MAC16 tumour bearing mice. C2C12 myoblasts transfected with mutant IkBα and PKCα inserts did not elicit a PIF-induced response, suggesting the importance of the transcription factor NF-kB and PKC  involvement in PIF signal transduction. 15(S)-HETE acts as an intracellular mediator of PIF and exerts an effect through the activation of PKC and subsequently IKK, which phosphorylates IkBα and allows NF-kB to migrate to the nucleus. This effect was negated with the PKC inhibitor calphostin C (300nM). A commercially produced PIF receptor antibody was raised in rabbits immunised with a peptide containing the partial N-terminal sequence of the PIF receptor. The PIF receptor antibody was successful in attenuating the PIF-induced increase in skeletal muscle catabolism and protein degradation in vitro at 10µg/ml (p<0.001) and 3.47mg/kg in vivo (p<0.001). The data suggest great potential in the development of this antibody as a therapy against cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cachexia in cancer is characterised by progressive depletion of both adipose tissue stores and skeletal muscle mass. Two catabolic factors produced by cachexia-inducing tumours have the potential for inducing these changes in body composition: (i) proteolysis-inducing factor (PIF) which acts on skeletal muscle to induce both protein degradation and inhibit protein synthesis, (ii) lipid-mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. Administration of lipid-mobilising factor (LMF) to mice produced a specific reduction in carcass lipid with a tendency to increase non-fat carcass mass. Treatment of murine myoblasts, myotubes and tumour cells with tumour-produced LMF, caused concentration dependent stimulation of protein synthesis, within a 24hr period. It produced an increase in intracellular cyclic AMP levels, which was linearly related to the increase in protein synthesis. The observed effect was attenuated by pretreating cells with the adenylate cyclase inhibitor, MDL12330A and was additive with stimulation produced by forskolin. Both propranolol and a specific 3 adrenergic antagonist SR59230A, significantly reduced the stimulation of protein synthesis induced by LMF. LMF also affected protein degradation in vitro, as demonstrated by a reduction in proteasome activity, a key component of the ubiquitin-dependent proteolytic pathway. These effects were opposite to those produced by PIF which caused both a decrease in the rate of protein synthesis and an elevation on protein breakdown when incubated in vitro.Incubation of LMF with a fat cell line produced alterations in the levels of guanine-nucleotide binding proteins (G proteins). This was also evident in adipocyte plasma membranes isolated from mice bearing the tumour model of cachexia, MAC16 adenocarcinoma and from patients with cancer cachexia. Progression through the cachectic state induced an upregulation of stimulatory G proteins paralleled with a downregulation of inhibitory G proteins. These changes would contribute to the increased lipid mobilisation seen in cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.