931 resultados para Multivariate geostatistics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work in this paper is of particular significance since it considers the problem of modelling cross- and auto-correlation in statistical process monitoring. The presence of both types of correlation can lead to fault insensitivity or false alarms, although in published literature to date, only autocorrelation has been broadly considered. The proposed method, which uses a Kalman innovation model, effectively removes both correlations. The paper (and Part 2 [2]) has emerged from work supported by EPSRC grant GR/S84354/01 and is of direct relevance to problems in several application areas including chemical, electrical, and mechanical process monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper builds on work presented in the first paper, Part 1 [1] and is of equal significance. The paper proposes a novel compensation method to preserve the integrity of step-fault signatures prevalent in various processes that can be masked during the removal of both auto- and cross correlation. Using industrial data, the paper demonstrates the benefit of the proposed method, which is applicable to chemical, electrical, and mechanical process monitoring. This paper, (and Part 1 [1]), has led to further work supported by EPSRC grant GR/S84354/01 involving kernel PCA methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy has been used to predict the abundance of the FA in clarified butterfat that was obtained from dairy cows fed a range of levels of rapeseed oil in their diet. Partial least squares regression of the Raman spectra against FA compositions obtained by GC showed good prediction for the five major (abundance >5%) FA with R-2=0.74-0.92 and a root mean SE of prediction (RMSEP) that was 5-7% of the mean. In general, the prediction accuracy fell with decreasing abundance in the sample, but the RMSEP was 1.25%. The Raman method has the best prediction ability for unsaturated FA (R-2=0.85-0.92), and in particular trans unsaturated FA (best-predicted FA was 18:1 tDelta9). This enhancement was attributed to the isolation of the unsaturated modes from the saturated modes and the significantly higher spectral response of unsaturated bonds compared with saturated bonds. Raman spectra of the melted butter samples could also be used to predict bulk parameters calculated from standard analyzes, such as iodine value (R-2=0.80) and solid fat content at low temperature (R-2=0.87). For solid fat contents determined at higher temperatures, the prediction ability was significantly reduced (R-2=0.42), and this decrease in performance was attributed to the smaller range of values in solid fat content at the higher temperatures. Finally, although the prediction errors for the abundances of each of the FA in a given sample are much larger with Raman than with full GC analysis, the accuracy is acceptably high for quality control applications. This, combined with the fact that Raman spectra can be obtained with no sample preparation and with 60-s data collection times, means that high-throughput, on-line Raman analysis of butter samples should be possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treasure et al. (2004) recently proposed a new sub space-monitoring technique, based on the N4SID algorithm, within the multivariate statistical process control framework. This dynamic-monitoring method requires considerably fewer variables to be analysed when compared with dynamic principal component analysis (PCA). The contribution charts and variable reconstruction, traditionally employed for static PCA, are analysed in a dynamic context. The contribution charts and variable reconstruction may be affected by the ratio of the number of retained components to the total number of analysed variables. Particular problems arise if this ratio is large and a new reconstruction chart is introduced to overcome these. The utility of such a dynamic contribution chart and variable reconstruction is shown in a simulation and by application to industrial data from a distillation unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses multivariate statistical techniques for identifying and isolating abnormal process behaviour. These techniques include contribution charts and variable reconstructions that relate to the application of principal component analysis (PCA). The analysis reveals firstly that contribution charts produce variable contributions which are linearly dependent and may lead to an incorrect diagnosis, if the number of principal components retained is close to the number of recorded process variables. The analysis secondly yields that variable reconstruction affects the geometry of the PCA decomposition. The paper further introduces an improved variable reconstruction method for identifying multiple sensor and process faults and for isolating their influence upon the recorded process variables. It is shown that this can accommodate the effect of reconstruction, i.e. changes in the covariance matrix of the sensor readings and correctly re-defining the PCA-based monitoring statistics and their confidence limits. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subspace monitoring has recently been proposed as a condition monitoring tool that requires considerably fewer variables to be analysed compared to dynamic principal component analysis (PCA). This paper analyses subspace monitoring in identifying and isolating fault conditions, which reveals that the existing work suffers from inherent limitations if complex fault senarios arise. Based on the assumption that the fault signature is deterministic while the monitored variables are stochastic, the paper introduces a regression-based reconstruction technique to overcome these limitations. The utility of the proposed fault identification and isolation method is shown using a simulation example and the analysis of experimental data from an industrial reactive distillation unit.

Relevância:

20.00% 20.00%

Publicador: