911 resultados para Multiple discriminant analysis
Resumo:
Burnout is a psychological syndrome triggered in response to continuous exposure to interpersonal stressors. It is considered a multifactorial construct, which is commonly characterized by three dimensions: emotional exhaustion, dehumanization, and lack of personal accomplishment.This study aimed to verify if the three characteristics of burnout (exhaustion, lack of dehumanization and personal accomplishment) are present in people working as guides Tourism in Natal - RN. It is a descriptive and quantitative study. 109 subjects were surveyed. Data collection was done through the use of questionnaires, the instrument used was the characterization of the Burnout Scale (ECB) created and validated in Brazil by Trocoli and Tamayo (2000). In order to analyze data we used descriptive statistics, analysis of core measures, exploratory and confirmatory factor analysis, reliability analysis, cluster analysis, multiple discriminant and Spearman correlation. Factor analysis identified four factors that explain 58.3% of the total variance. Those factors were named exhaustion, deception, avoidance, and dehumanization. The reliability of the instrument, as measured by Cronbach's Alpha was 0.918, which is considered excellent reliability. The 109 subjects were grouped into three cluster, which had the deception, avoidance, and dehumanization as discriminant. It is possible to conclude that the characteristics of burnout syndrome are present in the studied population where 19 people are on the high level of burnout, moderate in 32 and 56 in the light. The correlations between socio-demographic variables studied and the dimensions of burnout, were few and weak. The variable leave for health reasons in the study appeared to be related to feelings of exhaustion and avoidance behavior appeared related to younger individuals and who work only in the activity of Receptive Tourism Guide. Verification of the incidence of burnout in individuals surveyed suggest the need to adopt intervention strategies are individual, organizational and / or combined
Resumo:
A análise isotópica tem se mostrado uma ferramenta de suma importância ao processo de rastreabilidade, no entanto, existem divergências nas análises estatísticas dos resultados, uma vez que os dados são dependentes e advindos de vários elementos químicos tais como Carbono, Hidrogênio, Oxigênio, Nitrogênio e Enxofre (CHON'S). Com o intuito de estabelecer a análise propícia para os dados de rastreabilidade em aves pela técnica de isótopos estáveis e avaliar a necessidade da análise conjunta das variáveis, foram usados dados de carbono-13 e de nitrogênio-15 de ovos (albúmen + gema) de poedeiras e músculo peitoral de frangos de corte, os quais foram submetidos à análise estatística univariada (Anova e complementada pelo teste de Tukey) e multivariada (Manova e Discriminante). Os dados foram analisados no software Minitab 16, e os resultados, consolidados na teoria, confirmam a necessidade de análise multivariada, mostrando também que a análise discriminante esclarece as dúvidas apresentadas nos resultados de outros métodos de análise comparados nesta pesquisa.
Resumo:
Statistical methods of multiple regression analysis, trend surface analysis and principal components analysis were applied to seismographic data recorded during production blasting at a diabase quarry in the urban area of Campinas (SP), Brazil. The purpose of these analyses was to determine the influence of the following variables: distance (D), charge weight per delay (W), and scaled distance (SD) associated with properties of the rock body (orientation, frequency and angle of geological discontinuities; depth of bedrock and thickness of the soil overburden) in the variation of the peak particle velocity (PPV). This approach yielded variables with larger influences (loads) on the variation of ground vibration, as well as behavior and space tendency of this variation. The results showed a better relationship between PPV and D, with D being the most important factor in the attenuation of the ground vibrations. The geological joints and the depth to bedrock have a larger influence than the explosive charges in the variation of the vibration levels, but frequencies appear to be more influenced by the amount of soil overburden.
Resumo:
Objective: This case-control study analyzed mass spectrometry fingerprinting patterns of culture media samples used for embryo culture to predict embryo implantation. Methods: The culture medium harvested after embryo transfer of 22 embryos from 13 patients was used for the experiments. After embryo transfer, the remaining culture media were collected and samples were split in positive (n=8) and negative (n=14) implantation groups according to implantation outcomes (100% or 0% of implantation). Samples were individually diluted and injected directly to the Electrospray ionization (ESI) MS coupled to a Quadrupole Time-of-flight MS (Q-ToF-MS).Ions relative intensities of each spectrum were considered. Data analysis was conducted in MatLab 7.0 version using Partial Least Squares - Discriminant Analysis toolbox. Results: There were 3027 observed ions at 100% and 0% implantation groups by ESI-Q-ToF-MS. The statistical model could categorize the samples in two clusters, based on their positive and negative implantation outcomes. Less intense ions present in the mass spectra with statistical significance have contributed to the major differences to group distinction. Conclusions: Positive and negative implantation embryos showed a specific biochemical pattern present in culture media, which could be detected as a fast, simple and non-invasive way. This biochemical profile could help the selection of the most viable embryo, improving single embryo transfer and thus eliminating the risk and undesirable outcomes of multiple pregnancies. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..
Resumo:
Purpose. - The purposes of this study were: i) to compare the physiological responses measured during a specific table tennis incremental test with the physiological responses measured during cycling, arm cranking, and treadmill running tests; and ii) to verify the accuracy of table tennis performance prediction based on the physiological responses from these tests.Methods. - Eleven national level male table tennis players participated in the study and undertook incremental tests using ergometers. Table tennis performance was defined as the ranking obtained during a simulated tournament between the participants.Results. - In general, peak values for physiological variables (e.g., (V) over dotO(2PEAK) and [La]PEAK) were significantly lower (P < 0.05) in the specific test (e.g., (V) over dotO(2PEAK) = 39.9 +/- 1.5 ml.kg(-1) per minute and [La]PEAK = 6.4 +/- 0.5 mmol.L-1) than during cycling (e.g., (V) over dotO(2PEAK) = 41.3 +/- 1.4 ml.kg(-1) per minute and [La]PEAK = 10.2 +/- 0.7 mmol.L-1) or running (e.g., (V) over dotO(2PEAK) = 43.9 +/- 1.5 ml.kg(-1) per minute and [La]PEAK = 10.0 +/- 0.7 mmol.L-1), but higher than during arm cranking (e.g., (V) over dotO(2PEAK) = 26.6 +/- 1.6 ml.kg(-1) per minute and [La]PEAK = 8.9 +/- 0.6 mmol.L-1). At respiratory compensation point intensity (RCP), only the variables measured on arm cranking were lower (P < 0.05) than on the other ergometers. Stepwise multiple regression analysis showed significant correlation between table tennis performance and lactate concentration ([La]) and also rate of perceived effort (RPE) at RCP during cycling (r = 0.89; P < 0.05).Conclusion. - In conclusion, the significant differences obtained between the specific and laboratory ergometers demonstrate the need to use a specific test to measure physiological parameters in table tennis and the physiological parameters measured, independent of the ergometer used, are unable to predict table tennis performance. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
The use of markers distributed all long the genome may increase the accuracy of the predicted additive genetic value of young animals that are candidates to be selected as reproducers. In commercial herds, due to the cost of genotyping, only some animals are genotyped and procedures, divided in two or three steps, are done in order to include these genomic data in genetic evaluation. However, genomic evaluation may be calculated using one unified step that combines phenotypic data, pedigree and genomics. The aim of the study was to compare a multiple-trait model using only pedigree information with another using pedigree and genomic data. In this study, 9,318 lactations from 3061 buffaloes were used, 384 buffaloes were genotyped using a Illumina bovine chip (Illumina Infinium (R) bovineHD BeadChip). Seven traits were analyzed milk yield (MY), fat yield (FY), protein yield (PY), lactose yield (LY), fat percentage (F%), protein percentage (P%) and somatic cell score (SCSt). Two analyses were done: one using phenotypic and pedigree information (matrix A) and in the other using a matrix based in pedigree and genomic information (one step, matrix H). The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year-calving season), number of milking (2 levels), and age of buffalo at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The heritability estimates using matrix A were 0.25, 0.22, 0.26, 0.17, 0.37, 0.42 and 0.26 and using matrix H were 0.25, 0.24, 0.26, 0.18, 0.38, 0.46 and 0.26 for MY, FY, PY, LY, % F, % P and SCCt, respectively. The estimates of the additive genetic effect for the traits were similar in both analyses, but the accuracy were bigger using matrix H (superior to 15% for traits studied). The heritability estimates were moderated indicating genetic gain under selection. The use of genomic information in the analyses increases the accuracy. It permits a better estimation of the additive genetic value of the animals.
Resumo:
This clinical study was conducted to correlate the levels of endotoxins and bacterial counts found in primary endodontic infection with the volume of periapical bone destruction determined by cone-beam computed tomography (CBCT) analysis. Moreover, the levels of bacteria and endotoxins were correlated with the development of clinical features. Twenty-four root canals with primary endodontic disease and apical periodontitis were selected. Clinical features such as pain on palpation, pain on percussion, and previous episode of pain were recorded. The volume (cubic millimeters) of periapical bone destruction was determined by CBCT analysis. Endotoxins and bacterial samplings were collected by using sterile/apyrogenic paper points. Endotoxins were quantified by using limulus amebocyte lysate assay (KQCL test), and bacterial count (colony-forming units [CFU]/mL) was determined by using anaerobic culture techniques. Data were analyzed by Pearson correlation and multiple logistic regression (P < .05). Endotoxins and bacteria were detected in 100% of the root canal samples (24 of 24), with median values of 10.92 endotoxin units (EU)/mL (1.75-128 EU/mL) and 7.5 × 10(5) CFU/mL (3.20 × 10(5)-8.16 × 10(6) CFU/mL), respectively. The median volume of bone destruction determined by CBCT analysis was 100 mm(3) (10-450 mm(3)). The multiple regression analysis revealed a positive correlation between higher levels of endotoxins present in root canal infection and larger volume of bone destruction (P < .05). Moreover, higher levels of endotoxins were also correlated with the presence of previous pain (P < .05). Our findings revealed that the levels of endotoxins found in root canal infection are related to the volume of periapical bone destruction determined by CBCT analysis. Moreover, the levels of endotoxin are related to the presence of previous pain.
Resumo:
Four of the 12 major Glycine max ancestors of all modern elite U.S.A. soybean cultivars were the grandparents of Harosoy and Clark, so a Harosoy x Clark population would include some of that genetic diversity. A mating of eight Harosoy and eight Clark plants generated eight F1 plants. The eight F1:2 families were advanced via a plant-to-row selfing method to produce 300 F6-derived RILs that were genotyped with 266 SSR, 481 SNP, and 4 classical markers. SNPs were genotyped with the Illumina 1536-SNP assay. Three linkage maps, SSR, SNP, and SSR-SNP, were constructed with a genotyping error of < 1 %. Each map was compared with the published soybean consensus map. The best subset of 94 RILs for a high-resolution framework (joint) map was selected based on the expected bin length statistic computed with MapPop. The QTLs of seven traits measured in a 2-year replicated performance trial of the 300 RILs were identified using composite interval mapping (CIM) and multiple-interval mapping (MIM). QTL x Year effects in multiple trait analysis were compared with results of multiple-interval mapping. QTL x QTL effects were identified in MIM.
Resumo:
Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.
Resumo:
Background The genetic mechanisms underlying interindividual blood pressure variation reflect the complex interplay of both genetic and environmental variables. The current standard statistical methods for detecting genes involved in the regulation mechanisms of complex traits are based on univariate analysis. Few studies have focused on the search for and understanding of quantitative trait loci responsible for gene × environmental interactions or multiple trait analysis. Composite interval mapping has been extended to multiple traits and may be an interesting approach to such a problem. Methods We used multiple-trait analysis for quantitative trait locus mapping of loci having different effects on systolic blood pressure with NaCl exposure. Animals studied were 188 rats, the progenies of an F2 rat intercross between the hypertensive and normotensive strain, genotyped in 179 polymorphic markers across the rat genome. To accommodate the correlational structure from measurements taken in the same animals, we applied univariate and multivariate strategies for analyzing the data. Results We detected a new quantitative train locus on a region close to marker R589 in chromosome 5 of the rat genome, not previously identified through serial analysis of individual traits. In addition, we were able to justify analytically the parametric restrictions in terms of regression coefficients responsible for the gain in precision with the adopted analytical approach. Conclusion Future work should focus on fine mapping and the identification of the causative variant responsible for this quantitative trait locus signal. The multivariable strategy might be valuable in the study of genetic determinants of interindividual variation of antihypertensive drug effectiveness.
Resumo:
Abstract Background Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing ~25,000 genes. Results Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. Conclusion We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.
Resumo:
Questa tesi descrive alcuni studi di messa a punto di metodi di analisi fisici accoppiati con tecniche statistiche multivariate per valutare la qualità e l’autenticità di oli vegetali e prodotti caseari. L’applicazione di strumenti fisici permette di abbattere i costi ed i tempi necessari per le analisi classiche ed allo stesso tempo può fornire un insieme diverso di informazioni che possono riguardare tanto la qualità come l’autenticità di prodotti. Per il buon funzionamento di tali metodi è necessaria la costruzione di modelli statistici robusti che utilizzino set di dati correttamente raccolti e rappresentativi del campo di applicazione. In questo lavoro di tesi sono stati analizzati oli vegetali e alcune tipologie di formaggi (in particolare pecorini per due lavori di ricerca e Parmigiano-Reggiano per un altro). Sono stati utilizzati diversi strumenti di analisi (metodi fisici), in particolare la spettroscopia, l’analisi termica differenziale, il naso elettronico, oltre a metodiche separative tradizionali. I dati ottenuti dalle analisi sono stati trattati mediante diverse tecniche statistiche, soprattutto: minimi quadrati parziali; regressione lineare multipla ed analisi discriminante lineare.
Resumo:
CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ? 4/5 methylated genes), MSI (MSI-H: ? 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p < 0.0001) to more proximal tumour location, BRAF mutation, MSI-H, MGMT methylation (p = 0.022), advanced pT classification (p = 0.03), mucinous histology (p = 0.069), and less frequent KRAS mutation (p = 0.067) compared to CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p < 0.0001) and increased numbers of CD8+ intra-epithelial lymphocytes (p < 0.0001) were related to CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H.
Resumo:
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.