982 resultados para Moscou (Russia)
Resumo:
Changes in area of 30 small glaciers (mostly <1 km2) in the northern Polar Urals (67.5-68.25 °N) between 1953 and 2000 were assessed using historic aerial photography from 1953 and 1960, ASTER and panchromatic Landsat ETM+ imagery from 2000, and data from 1981 and 2008 terrestrial surveys. Changes in volume and geodetic mass balance of IGAN and Obruchev glaciers were calculated using data from terrestrial surveys in 1963 and 2008. In total, glacier area declined by 22.3 ± 3.9% in the 1953/60-2000 period. The areas of individual glaciers decreased by 4-46%. Surfaces of Obruchev and IGAN glaciers lowered by 22.5 ± 1.7 m and 14.9 ± 2.1 m. Over 45 years, geodetic mass balances of Obruchev and IGAN glaciers were -20.66 ± 2.91 and -13.54 ± 2.57 m w.e. respectively. Glacier shrinkage in the Polar Urals is related to a summer warming of 1 °C between 1953-81 and 1981-2008 and its rates are consistent with other regions of northern Asia but are higher than in Scandinavia. While glacier shrinkage intensified in the 1981-2000 period relative to 1953-81, increasing winter precipitation and shading effects slowed glacier wastage in 2000-08.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution “provenancing” of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the “provenancing” of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
A record of dust deposition events between 2009 and 2012 on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow ice core is presented for the first time for this region. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (cf. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in north-eastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric south-westerly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level and, although these events were less frequent, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centered over or extending towards the Caspian Sea and a weaker southerly or south-easterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterise dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.
Resumo:
This article provides a critical overview of Public-Private Partnerships (PPPs) in Russia and Kazakhstan and examines the rationale underpinning such partnerships. The analysis discusses the reasons why governments in Russia and Kazakhstan focus principally on concessions as a form of PPP and goes on to provide a critical assessment of the key approaches and situational factors relating to concessions in these two countries. The article finds that external globalization impulses pressed Russia and Kazakhstan to align their policies and institutions with western orthodoxy and perceived international best practice. An ever-increasing emphasis on use of PPPs has been a key feature of this alignment. However, the governments of Russia and Kazakhstan have increasingly resorted to concessions as progress with the development and implementation of Western style PPP models has stalled. This article concludes that the governments of Russia and Kazakhstan have demonstrated an overly optimistic approach to PPP and as a result may have substantially understated their overall concessional risks and costs. Features of Russian and Kazakhstani PPP arrangements such as ambiguity in output specification and extensive reliance on government subsidies, combined with lack of expertise of private partners, may significantly decrease concession benefits.
Resumo:
Changes in the map area of 498 glaciers located on the Main Caucasus ridge (MCR) and on Mt. Elbrus in the Greater Caucasus Mountains (Russia and Georgia) were assessed using multispectral ASTER and panchromatic Landsat imagery with 15 m spatial resolution in 1999/2001 and 2010/2012. Changes in recession rates of glacier snouts between 1987–2001 and 2001–2010 were investigated using aerial photography and ASTER imagery for a sub-sample of 44 glaciers. In total, glacier area decreased by 4.7 ± 2.1% or 19.2 ± 8.7 km2 from 407.3 ± 5.4 km2 to 388.1 ± 5.2 km2. Glaciers located in the central and western MCR lost 13.4 ± 7.3 km2 (4.7 ± 2.5%) in total or 8.5 km2 (5.0 ± 2.4%) and 4.9 km2 (4.1 ± 2.7%) respectively. Glaciers on Mt. Elbrus, although located at higher elevations, lost 5.8 ± 1.4 km2 (4.9 ± 1.2%) of their total area. The recession rates of valley glacier termini increased between 1987–2000/01 and 2000/01–2010 (2000 for the western MCR and 2001 for the central MCR and Mt.~Elbrus) from 3.8 ± 0.8, 3.2 ± 0.9 and 8.3 ± 0.8 m yr−1 to 11.9 ± 1.1, 8.7 ± 1.1 and 14.1 ± 1.1 m yr−1 in the central and western MCR and on Mt. Elbrus respectively. The highest rate of increase in glacier termini retreat was registered on the southern slope of the central MCR where it has tripled. A positive trend in summer temperatures forced glacier recession, and strong positive temperature anomalies in 1998, 2006, and 2010 contributed to the enhanced loss of ice. An increase in accumulation season precipitation observed in the northern MCR since the mid-1980s has not compensated for the effects of summer warming while the negative precipitation anomalies, observed on the southern slope of the central MCR in the 1990s, resulted in stronger glacier wastage.
Resumo:
Public–private partnerships (PPPs) are new in Russia and represent project implementation in progress. The government is actively pursuing PPP deployment in sectors such as transportation and urban infrastructure, and at all levels including federal, regional and especially local. Despite the lack of pertinent laws and regulations, the PPP public policy quickly transforms into a policy paradigm that provides simplified concepts and solutions and intensifies partnership development. The article delineates an emerging model of Russia’s PPP policy paradigm, whose structure includes the shared understanding of the need for long-term collaboration between the public sector and business, a changing set of government responsibilities that imply an increasing private provision of public services, and new institutional capacities. This article critically appraises the principal dynamics that contribute to an emerging PPP policy paradigm, namely the broad government treatment of the meaning of a partnership and of a contractual PPP; a liberal PPP approval process that lacks clear guidelines and consistency across regions; excessive emphasis on positive PPP externalities and neglect of drawbacks; and unjustifiably extensive government financial support to PPPs. Whilst a paradigm appears to be useful specifically for the policy purpose of PPP expansion, it may also mask inefficiencies such as higher prices of public services and greater government risks.