866 resultados para Monitoring Systems
Resumo:
In February 2011, the National Agency of Petroleum, Natural Gas and Biofuels (ANP) has published a new Technical Rules for Handling Land Pipeline Petroleum and Natural Gas Derivatives (RTDT). Among other things, the RTDT made compulsory the use of monitoring systems and leak detection in all onshore pipelines in the country. This document provides a study on the method for detection of transient pressure. The study was conducted on a industrial duct 16" diameter and 9.8 km long. The pipeline is fully pressurized and carries a multiphase mixture of crude oil, water and natural gas. For the study, was built an infrastructure for data acquisition and validation of detection algorithms. The system was designed with SCADA architecture. Piezoresistive sensors were installed at the ends of the duct and Digital Signal Processors (DSPs) were used for sampling, storage and processing of data. The study was based on simulations of leaks through valves and search for patterns that characterize the occurrence of such phenomena
Resumo:
The termite problem in eucalyptus forest plantations in Brazil has been registered since 1908. The main termite pests can be separated in four groups: a) seedling/sapling termites; b) heartwood termites; c) bark termites and d) wood termites. The termites in the first group attack root and stalk bases of young eucalyptus plants. The most common species are Syntermes spp. and Cornitermes spp. and they are a serious obstacle to early eucalyptus developing. The heartwood termites attack formed trees destroying eucalyptus heartwood. Coptotermes testaceus is the most cited species in reports, but more species probably occur. Plant mortality caused by seedling/sapling termites vary of 10-70 %. There are not effective control methods to heartwood termites. The main seedling/sapling termite control strategy is the chemical barrier around root systems of plants. Nowadays, studies are being carried out to determine monitoring systems to termite infestations. Early results indicate that proportionally, few areas really need insecticide application, due to spatial distribution of termites to be aggregated. Therefore, it is necessary to develope techniques rationalizing insecticide utilization in eucalyptus plantations, to keep production systems feasible and to be suitable for environmental exigencies.
Resumo:
Includes bibliography
Resumo:
This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.
Resumo:
This report analyses the coastal and human settlements, tourism and transport sectors in Barbados to assess the potential economic impact of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Barbados. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050 (tourism and transport sectors) and 2100 (coastal and human settlements sector). An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The analysis has shown that based upon exposed assets and population, SLR can be classified as having the potential to create potential catastrophe in Barbados. The main contributing factor is the concentration of socioeconomic infrastructure along the coastline in vulnerable areas. The A2 and B2 projections have indicated that the number of catastrophes that can be classified as great is likely to be increased for the country. This is based upon the possible effects of the projected unscheduled impacts to the economy both in terms of loss of life and economic infrastructure. These results arise from the A2 and B2 projections, thereby indicating that growth in numbers and losses are largely due to socioeconomic changes over the projection period and hence the need for increased adaptation strategies. A key adaptation measure recommended is for the government of Barbados to begin reducing the infrastructure deficit by continuously investing in protective infrastructure to decrease the country’s vulnerability to changes in the climate. With regard to the tourism sector, it was found that by combining the impacts due to a reduction in tourist arrivals, coral reef loss and SLR, estimated total economic impact of climate change is US $7,648 million (A2 scenario) and US $5,127 million (B2 scenario). An economic analysis of the benefits and costs of several adaptation options was undertaken to determine the cost effectiveness of each one and it was found that four (4) out of nine (9) options had high cost-benefit ratios. It is therefore recommended that the strategies that were most attractive in terms of the cost-benefit ratios be pursued first and these were: (1) enhanced reef monitoring systems to provide early warning alerts of bleaching events; (2) artificial reefs or fish-aggregating devices; (3) development of national adaptation plans (levee, sea wall and boardwalk); (4) revision of policies related to financing carbon neutral tourism; and (5) increasing recommended design wind speeds for new tourism-related structures. The total cost of climate change on international transportation in Barbados aggregated the impacts of changes in temperature and precipitation, new climate policies and SLR. The impact for air transportation ranges from US$10,727 million (B2 scenario) to US$12,279 million (A2 scenario) and for maritime transportation impact estimates range from US$1,992 million (B2 scenario) to US$2,606 million (A2 scenario). For international transportation as a whole, the impact of climate change varies from US$12,719 million under the B2 scenario to US$14,885 million under the A2 scenario. Barbados has the institutions set up to implement adaptive strategies to strengthen the resilience of the existing international transportation system to climate change impacts. Air and sea terminals and facilities can be made more robust, raised, or even relocated as need be, and where critical to safety and mobility, expanded redundant systems may be considered.
Resumo:
This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Montserrat. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009, there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. Besides temperature, there is also the threat of wind speeds. Since the early 20th century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Montserrat, the estimated damage from four windstorms (including hurricanes) affecting the island was US$260 million or almost five times 2009 gross domestic product (GDP). Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. The report attempted to quantify the likely effects of the changes in the climatic factors mentioned above. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations as well as those under two likely climate scenarios: A2 and B2. The results suggest that under both scenarios, the island’s key tourism climatic features will likely decline and therefore negatively impact on the destination experience of visitors. Including this tourism climatic index in a tourism demand model suggests that this would translate into losses of around 145% of GDP. As it relates to coral reefs, the value of the damage due to the loss of coral reefs was estimated at 7.6 times GDP, while the damage due to land loss for the tourism industry was 45% of GDP. The total cost of climate change for the tourism industry was therefore projected to be 9.6 times 2009 GDP over a 40-year horizon. Given the potential for significant damage to the industry, a large number of potential adaptation measures were considered. Out of these, a short-list of 9 potential options was selected using 10 evaluation criteria. These included: (a) Increasing recommended design wind speeds for new tourism-related structures; (b) Construction of water storage tanks; (c) Irrigation network that allows for the recycling of waste water; (d) Enhanced reef monitoring systems to provide early warning alerts of bleaching events; (e) Deployment of artificial reefs and fish-aggregating devices; (f) Developing national evacuation and rescue plans; (g) Introduction of alternative attractions; (h) Providing re-training for displaced tourism workers, and; (i) Revised policies related to financing national tourism offices to accommodate the new climatic realities Using cost-benefit analysis, three options were put forward as being financially viable and ready for immediate implementation: (a) Increase recommended design speeds for new tourism-related structures; (b) Enhance reef monitoring systems to provide early warning alerts of bleaching events, and; (c) Deploy artificial reefs or fish-aggregating devices. While these options had positive benefit cost ratios, other options were also recommended based on their non-tangible benefits: an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climatic realities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)