974 resultados para Moments dipolars
Resumo:
PURPOSE: To analyze the changes in both respiratory function and cardiopulmonary exercise tests results in patients subjected to laparoscopic cholecystectomy. METHODS: Fifty patients were evaluated (76% women) and the average age was 47.8±14.2 years. All individuals underwent the measurement of spirometry, manovacuometry, 6-minute walk test (6MWT) and stair-climbing test (SCT). All tests were performed at the first (PO1), fifth (PO5) and thirtieth (PO30) postoperative days. RESULTS: BMI average was 28.8±4.8 kg/m2. Sample comprised 68% non-smokers, 20% current smokers, and 12% former smokers. There was no incidence of postoperative complication whatsoever. There was a significant decrease in spirometric values at PO1, but values were similar to the ones of PRE at PO30. Manovacuometry showed alterations at PO1 displaying values that were similar to the ones of PRE at PO30. 6MWT was significantly shorter at until PO5, but at PO30 values were similar to ones of PRE. As for SCT, values were significantly compromised at PO5 and PO30 since they were similar to the ones of PRE. CONCLUSION: Patients submitted to laparoscopic cholecystectomy present a decrease in cardiorespiratory function on the first postoperative moments but there is a rapid return to preoperative conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem
Resumo:
Soil CO2 efflux is the primary source of CO2 emissions from terrestrial ecosystems to the atmosphere. The rates of this flux vary in time and space producing hot moments (sudden temporal high fluxes) and hot spots (spatially defined high fluxes), but these high reaction rates are rarely studied in conjunction with each other. We studied temporal and spatial variation of soil CO2 efflux in a water-limited Mediterranean ecosystem in Baja California, Mexico. Soil CO2 efflux increased 522% during a hot moment after rewetting of soils following dry summer months. Monthly precipitation was the primary driver of the seasonal trend of soil CO2 efflux (including the hot moment) and through changes in soil volumetric water content (VWC) it influenced the relationship between CO2 efflux and soil temperature. Geostatistical analyses showed that the spatial dependence of soil CO2 efflux changed between two contrasting seasons (dry and wet). During the dry season high soil VWC was associated with high soil CO2 efflux, and during the wet season the emergence of a hot spot of soil CO2 efflux was associated with higher root biomass and leaf area index. These results suggest that sampling designs should accommodate for changes in spatial dependence of measured variables. The spatio-temporal relationships identified in this study are arguably different from temperate ecosystems where the majority of soil CO2 efflux research has been done. This study provides evidence of the complexity of the mechanisms controlling the spatio-temporal variability of soil CO2 efflux in water-limited ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The magnetic moments of the low-lying spin-parity J(P) = 1/2(-), 3/2(-) Lambda resonances, like, for example, Lambda(1405) 1/2(-), Lambda(1520) 3/2(-), as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization.
Resumo:
In this paper we discuss the problem of how to discriminate moments of interest on videos or live broadcast shows. The primary contribution is a system which allows users to personalize their programs with previously created media stickers-pieces of content that may be temporarily attached to the original video. We present the system's architecture and implementation, which offer users operators to transparently annotate videos while watching them. We offered a soccer fan the opportunity to add stickers to the video while watching a live match: the user reported both enjoying and being comfortable using the stickers during the match-relevant results even though the experience was not fully representative.
Resumo:
[EN]When analysing the seismic response of pile groups, a vertically-incident wavefiel is usually employed even though it doesnot necessarily correspond to the worst case scenario. This work aims to study the influence of both type of seismic body wave and its angle of incidence on the dynamic response of pile foundations.
Resumo:
In dieser Arbeit wird eine Messung des magnetischen Moments des Elektronsin wasserstoffähnlichem Kohlenstoff vorgestellt. Das Ergebnis derMessungen an einem einzelnen gespeicherten12C5+-Ionist: g = 2,001 041 596 4 (8)(6)(44). Der erste Fehler bezeichnet die statistischeUnsicherheit, der zweite Fehler die systematische Unsicherheit. Der letzteFehler resultiert aus der Unsicherheit des Verhältnisses der Massedes 12C5+-Ions und der des Elektrons. Die hohe Genauigkeitder Messung wurde durch die räumliche Trennung des Nachweises derAusrichtung des Spins und des Induzierens der spin-flips erreicht. DieMessung stellt die bisher genaueste Bestimmung eines atomaren g-Faktorsdar und bestätigt den theoretischen Wert der Göteborger Theoriegruppeauf 7*10-9. Zusammen mit diesen Rechnungen verifiziert sie dieBound-State-QED-Korrekturen genauer als 1%. Somit ist der g-Faktor desin12C5+ gebunden Elektrons neben Messungen der Lambshiftin schweren hochgeladenen Ionen der genaueste Test der Bound-State-QED.
Wird auf die Richtigkeit der Berechnung des g-Faktors des gebundenenElektrons vertraut, kann folgender Wert für die atomare Masse desElektrons gewonnen werden: me= 0,000 548 579 912 8 (15) u.
Resumo:
Kernmomente und Kernladungsradien von kurzlebigen NeonIsotopen in der Kette 17-26,28Ne wurden mittels kollinearerLaserspektroskopie am online Massenseparator ISOLDE am CERN(Genf) vermessen. Bei kollinearer Laserspektroskopieverlangt die Bestimmung der Kernladungsradien leichterIsotope aus der Isotopeverschiebung nach einer sehr präzisenKenntnis der Ionenstrahlenergie. Zu diesem Zweck wurde eineneue, auf kollinearer Laserspektroskopie basierende Methodezur Strahlenergiemessung entwickelt und erfolgreich in denExperimenten zu Neon eingesetzt. Die experimentellenErgebnisse werden mit theoretischen Rechnungen im Rahmen desSchalenmodells und von kollektiven Kernmodellen verglichen.
Resumo:
The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ”magic numbers”, which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100−130Cd by collinear laser spectroscopy.rnrnThe experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2S1/2 → 5p 2P3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW.rnrnThe acquired data of the Z = 48 Cd isotopes, having one proton pair less than the Z = 50 shell closure at tin, covers the isotopes from N = 52 up to N = 82 and therefore almost the complete region between the neutron shell closures N = 50 and N = 82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments, the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I = 11/2− isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.
Resumo:
The aim of this study was to assess the effect of bracket type on the labiopalatal forces and moments generated in the sagittal plane. Incognito™ lingual brackets (3M Unitek), STb™ lingual brackets (Light Lingual System; ORMCO), and conventional 0.018 inch slot brackets (Gemini; 3M Unitek) were bonded on three identical maxillary acrylic resin models, with a palatally displaced right lateral incisor. The transfer trays for the indirect bonding of the lingual brackets were constructed in certified laboratories. Each model was mounted on the orthodontic measurement and simulation system and ten 0.013 inch CuNiTi wires were used for each bracket type. The wire was ligated with elastomerics and each measurement was repeated once after re-ligation. The labiopalatal forces and the moments in the sagittal plane were recorded on the right lateral incisor. One-way analysis of variance and post hoc Scheffe pairwise comparisons were used to assess the effect on bracket type on the generated forces and moments. The magnitude of forces ranged from 1.62, 1.27, and 1.81 N for the STb, conventional, and Incognito brackets, respectively; the corresponding moments were 2.01, 1.45, and 2.19 N mm, respectively. Bracket type was a significant predictor of the generated forces (P < 0.001) and moments (P < 0.001). The produced forces were different among all three bracket types, whereas the generated moments differed between conventional and lingual brackets but not between lingual brackets.