967 resultados para Molecular Weights


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of lutetium alkyl, amino, and guanidinato complexes based upon an amino-phosphine ligand framework had been prepared. These complexes were applied to initiate ring-opening polymerization of 2,2'-dimethyltrimethylene carbonate (DTC). The type of the initiator significantly influenced the catalytic activity of these complexes in a trend as follows: alkyl approximate to guanidinate > amide, whereas the complexes with flexible backbone between P and N atoms within the ligand exhibited higher activity than those with rigid backbone. The isolated PDTC had bimodal-mode molecular weight distribution. The molecular weights of each fraction increased linearly with the conversion, indicating that there might be two active species. This had been confirmed by analyses of oligomeric DTC living species and oligomer with NMR technique as the metal-alkoxide and the four-membered metallocyclic lactate. Kinetic investigation displayed that the polymerization rate was the first order with the monomer concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have synthesized macrocyclic polystyrene- (PS-) terminated PS star polymers via a core-cross-linking approach in this work. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via click chemistry and ATRP polymerization method. The "living" ATRP initiating chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-cross-linked macrocyclic star polymer. The number of arms attached to the macrocyclic star polymers was measured with NMR. and absolute molecular weights with gel permeation chromatography (GPC) with multiangle laser light scattering detector. These macrocyclic star polymers had a highly cross-linked core and many radiating arms. The shorter tadpole-shaped precursors caused core-cross-linked star polymers with higher molecular weights and more arm numbers. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide (ViEtIM(+)Br(-)) was first used to copolymerize with acrylonitrile (AN) successfully under various conditions. This was achieved with azobisisobutyronitrile as the initiator and dimethyl sulfoxide as the solvent. The kinetics of this copolymerization were studied. The values of the monomer apparent reactivity ratios were calculated by the Kelen-Tudos method. The apparent reactivity ratios of ViEtIM(+)Br(-) (r(ViEtIM+Br-)) and AN (r(AN)) were similar at polymerization conversions of less than 10%, (r(AN) = 0.954, r(ViEtIM+Br-) = 0.976). The copolymers were obtained with high molecular weights and high hydrophilicides. The copolymers were characterized by H-1-NMR, differential scanning calorimetry, and thermogravimetric analysis. These copolymers may be potentially useful in the preparation of precursor fibers and carbon fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of monodisperse oligo(9,9-di-n-octylfluorene-co-bithiophene)s (OFbTs) with molecular lengths of up to 19.5 nm and molecular weights up to 7025 g mol(-1) has been synthesized by a divergent/convergent approach involving Stille coupling reactions. Stille coupling is quite efficient in preparing this class of oligomers, and even the molecule with nine fluorene units and eight bithiophene units (F9Th16) can be synthesized in a yield as high as 70%. Because of easy functionalization of the thiophene ring at its alpha position, no additional protecting group allowing activation for further reaction is necessary. However, the synthetic routes must be optimized to eliminate contamination of the targeting compounds with the homocoupling product of the organotin reagents. Synthesis of the longest oligomer F13Th24 in a relative large quantity is limited by its low yield due to the pronounced ligand-exchange side reactions of the starting materials and reaction intermediates. All oligomers longer than F4Th6 are nematic mesomorphs and exhibit enhanced glass transition temperature and clearing point with increasing molecular length, as revealed by differential scanning calorimetry and polarizing optical microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new class of high-performance polymers [poly(phenylene-co-naphthalimide)s] was prepared through the Ni(0) catalytic coupling of N-(4-chloro-2-trifluromethylphenyl)-5-chloro-1,8-naphthalimide and 2,5-dichlorobenzophenone. The resulting copolymers exhibited high molecular weights (high inherent viscosities) and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and mechanical properties. The glass-transition temperatures of the copolymers ranged from 320 to 403 degrees C and increased as the content of the naphthalimide moiety increased. Tough polymer films, obtained via casting from N-methylpyrrolidone solutions, had tensile strengths of 64-107 MPa and tensile moduli of 3.4-4.7 GPa. The gas permeability coefficients of the copolymers were measured for H-2, CO2, O-2, CH4, and N-2. They showed oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen (permeability coefficient for O-2/permeability coefficient for N-2) in the ranges of 1.39-4.31 and 4.92-5.38 barrer, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two novel salicylaldimine-based neutral nickel(II) complexes, [(2,6-iPr(2)C(6)H(3))NCH(2-ArC6H3O)]Ni(PPh3)Ph (6, Ar = 2-(OH)C6H4; 8, Ar = 2-OH-3-(2,6-iPr(2)C(6)H(3)NCH)C6H3), have been synthesized, and their structures have also been confirmed by X-ray crystallography, elemental analysis, and H-1 and C-13 NMR spectra. An important structural feature of the two complexes is the free hydroxyl group, which allows them to react with silica pretreated with trimethylaluminum under immobilization by the formation of a covalent bond between the neutral nickel(II) complex and the pretreated silica. As active single-component catalysts, the two complexes exhibited high catalytic activities up to 1.14 and 1.47 x 10(6) g PE/mol(Ni)center dot h for ethylene polymerization, respectively, and yielded branched polymers. Requiring no cocatalyst, the two supported catalysts also showed relatively high activities up to 4.0 x 10(5) g PE/mol(Ni)center dot h and produced polyethylenes with high weight-average molecular weights of up to 120 kg/mol and a moderate degree of branching (ca. 13-26 branches per 1000 carbon atoms).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of reactor blends of linear and branched polyethylenes have been prepared, in the presence of modified methylaluminoxane, using a combination of 2,6-bis[1(2,6-dimethyphenylimino) pyridyl]-cobalt(II) dichloride (1), known as an active catalyst for producing linear polyethylene, and [1,4-bis(2,6-diidopropylphenyl)] acenaphthene diimine nickel(II) dibromide (2), which is active for the production of branched polyethylene. The polymerizations were performed at various levels of catalyst feed ratio at 10 bar. The linear correlation between catalyst activity and concentration of catalyst 2 suggested that the catalysts performed independently from each other. The weight-average molecular weights ((M) over bar (w)), crystalline structures, and phase structures of the blends were investigated, using a combination of gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering techniques. It was found that the polymerization activities and MWs and crystallization rate of the polymers took decreasing tendency with the increase of the catalyst 2 ratios, while melting temperatures (T-m), crystalline temperatures (T,), and crystalline degrees took decreasing tendency. Long period was distinctly influenced by the amorphous component concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organically modified montmorillonites (OMMTs) by octadecylammonium chloride with two adsorption levels were dispersed in polyamide 12 (PA12) matrices with two molecular weights for different melt mixing times in order to investigate morphology evolutions and factors influencing fabrication of PA12 nanocomposites. Different adsorption levels of the modifier in the OMMTs provide different environments for diffusion of polymer chains and different attractions between MMT layers. Wide-angle X-ray diffraction (WAXD), transmission electron microscope (TEM) and gas permeability were used to characterize morphologies of the nanocomposites. Both OMMTs can be exfoliated in the PA12 matrix with higher molecular weight, but only OMMT with lower adsorption level can be exfoliated in the PA12 matrix with lower molecular weight. It was attributed to the differences in the levels of shear stress and molecular diffusion in the nanocomposites. The exfoliation of OMMT platelets results from a combination of molecular diffusion and shear. After intercalation of PA12 into interlayer of OMMT in the initial period of mixing, further dispersion of OMMTs in PA12 matrices is controlled by a slippage process of MMT layers during fabricating PA12 nanocomposites with exfoliated structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.