879 resultados para Modulus of Smoothness
Resumo:
Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.
Resumo:
The San Julián’s stone is the main material used to build the most important historical buildings in Alicante city (Spain). This paper describes the analysis developed to obtain the relationship between the static and the dynamic modulus of this sedimentary rock heated at different temperatures. The rock specimens have been subjected to heating processes at different temperatures to produce different levels of weathering on 24 specimens. The static and dynamic modulus has been measured for every specimen by means of the ISRM standard and ultrasonic tests, respectively. Finally, two analytic formulas are proposed for the relationship between the static and the dynamic modulus for this stone. The results have been compared with some relationships proposed by different researchers for other types of rock. The expressions presented in this paper can be useful for the analysis, using non-destructive techniques, of the integrity level of historical constructions built with San Julián’s stone affected by fires.
Resumo:
"September 2005."
Resumo:
"HRDI-11/10-05(2M)E"--P. [4] of cover.
Resumo:
Mode of access: Internet.
Resumo:
2010 Mathematics Subject Classification: 41A25, 41A10.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A36.
Resumo:
2000 Mathematics Subject Classification: 46B70, 41A25, 41A17, 26D10. ∗Part of the results were reported at the Conference “Pioneers of Bulgarian Mathematics”, Sofia, 2006.
Resumo:
* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China.
Resumo:
2000 Mathematics Subject Classification: 46B70, 41A10, 41A25, 41A27, 41A35, 41A36, 42A10.
Resumo:
MSC 2010: 41A10, 41A15, 41A25, 41A36
Resumo:
The elastic properties of the arterial wall have been the subject of physiological, clinical and biomedical research for many years. There is convincing evidence that the elastic properties of the large arteries are seriously impaired in the presence of cardiovascular disease (CVD), due to alterations in the intrinsic structural and functional characteristics of vessels [1]. Early detection of changes in the elastic modulus of arteries would provide a powerful tool for both monitoring patients at high cardiovascular risk and testing the effects of pharmaceuticals aimed at stabilizing existing plaques by stiffening them or lowering the lipids.
Resumo:
Carbon nanotubes (CNTs) were discovered by Iijima in 1991 as the fourth form of carbon. Carbon nanotubes are the ultimate form of the carbon fibre because of its high Young's modulus in the order of 1 TPa, which is very useful for load transfer in nanocomposites. In the present work, CNT/Cu nanocomposites were fabricated by the powder metallurgy technique, and after extrusion of the nanocomposites, bright field transmission electron microscopic studies were carried out. From the transmission electron microscopic images obtained, a novel method of ascertaining the Young's modulus of multiwalled CNTs is worked out in the present paper, which turns out to be 0.94 TPa, which is consistent with experimental results. Furthermore, an attempt is made to investigate the microhardness of copper by reinforcing it with multiwalled CNTs. There is an increase in hardness by twofold in CNT/Cu nanocomposites as compared to pure Cu matrix. This is due to high relative density, even distribution of CNTs and proper bonding at CNT/Cu interfaces.
Resumo:
The work done during indentation is examined using dimensional analysis and finite element calculations for conical indentation in elastic-plastic solids with work hardening. An approximate relationship between the ratio of hardness to elastic modulus and the ratio of irreversible work to total work in indentation is found. Consequently, the ratio of hardness to elastic modulus may be obtained directly from measuring the work of indentation. Together with a well-known relationship between elastic modulus, initial unloading slope, and contact area, a new method is then suggested for estimating the hardness and modulus of solids using instrumented indentation with conical or pyramidal indenters.
Resumo:
In the present paper, the hardness and Young's modulus of film-substrate systems are determined by means of nanoindentation experiments and modified models. Aluminum film and two kinds of substrates; i.e. glass and silicon, are studied. Nanoindentation XP II and continuous stiffness mode are used during the experiments. In order to avoid the influence of the Oliver and Pharr method used in the experiments, the experiment data are analyzed with the constant Young's modulus assumption and the equal hardness assumption. The volume fraction model (CZ model) proposed by Fabes et al. (1992) is used and modified to analyze the measured hardness. The method proposed by Doerner and Nix (DN formula) (1986) is modified to analyze the measured Young's modulus. Two kinds of modified empirical formula are used to predict the present experiment results and those in the literature, which include the results of two kinds of systems, i.e., a soft film on a hard substrate and a hard film on a soft substrate. In the modified CZ model, the indentation influence angle, phi, is considered as a relevant physical parameter, which embodies the effects of the indenter tip radius, pile-up or sink-in phenomena and deformation of film and substrate.