906 resultados para Model driven architecture (MDA) initiative
Resumo:
Many challenges have been imposed on the middleware to support applications for digital TV because of the heterogeneity and resource constraints of execution platforms. In this scenario, the middleware must be highly configurable so that it can be customized to meet the requirements of applications and underlying platforms. This work aims to present the GingaForAll, a software product line developed for the Ginga - the middleware of the Brazilian Digital TV (SBTVD). GingaForAll adds the concepts of software product line, aspect orientation and model-driven development to allow: (i) the specification of the common characteristics and variables of the middleware, (ii) the modularization of crosscutting concerns - both mandatory and concepts variables - through aspects, (iii) the expression of concepts as a set of models that increase the level of abstraction and enables management of various software artifacts in terms of configurable models. This work presents the architecture of the software product line that implements such a tool and architecture that supports automatic customization of middleware. The work also presents a tool that implements the process of generating products GingaForAll
Resumo:
The tracking between models of the requirements and architecture activities is a strategy that aims to prevent loss of information, reducing the gap between these two initial activities of the software life cycle. In the context of Software Product Lines (SPL), it is important to have this support, which allows the correspondence between this two activities, with management of variability. In order to address this issue, this paper presents a process of bidirectional mapping, defining transformation rules between elements of a goaloriented requirements model (described in PL-AOVgraph) and elements of an architectural description (defined in PL-AspectualACME). These mapping rules are evaluated using a case study: the GingaForAll LPS. To automate this transformation, we developed the MaRiPLA tool (Mapping Requirements to Product Line Architecture), through MDD techniques (Modeldriven Development), including Atlas Transformation Language (ATL) with specification of Ecore metamodels jointly with Xtext , a DSL definition framework, and Acceleo, a code generation tool, in Eclipse environment. Finally, the generated models are evaluated based on quality attributes such as variability, derivability, reusability, correctness, traceability, completeness, evolvability and maintainability, extracted from the CAFÉ Quality Model
Resumo:
Models are becoming increasingly important in the software development process. As a consequence, the number of models being used is increasing, and so is the need for efficient mechanisms to search them. Various existing search engines could be used for this purpose, but they lack features to properly search models, mainly because they are strongly focused on text-based search. This paper presents Moogle, a model search engine that uses metamodeling information to create richer search indexes and to allow more complex queries to be performed. The paper also presents the results of an evaluation of Moogle, which showed that the metamodel information improves the accuracy of the search.
Resumo:
Software must be constantly adapted to changing requirements. The time scale, abstraction level and granularity of adaptations may vary from short-term, fine-grained adaptation to long-term, coarse-grained evolution. Fine-grained, dynamic and context-dependent adaptations can be particularly difficult to realize in long-lived, large-scale software systems. We argue that, in order to effectively and efficiently deploy such changes, adaptive applications must be built on an infrastructure that is not just model-driven, but is both model-centric and context-aware. Specifically, this means that high-level, causally-connected models of the application and the software infrastructure itself should be available at run-time, and that changes may need to be scoped to the run-time execution context. We first review the dimensions of software adaptation and evolution, and then we show how model-centric design can address the adaptation needs of a variety of applications that span these dimensions. We demonstrate through concrete examples how model-centric and context-aware designs work at the level of application interface, programming language and runtime. We then propose a research agenda for a model-centric development environment that supports dynamic software adaptation and evolution.
Resumo:
We use an automatic weather station and surface mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do, in general, balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 140 mm w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 ◦ C increase results in 56 % higher melt rates.
Resumo:
Usability plays an important role to satisfy users? needs. There are many recommendations in the HCI literature on how to improve software usability. Our research focuses on such recommendations that affect the system architecture rather than just the interface. However, improving software usability in aspects that affect architecture increases the analyst?s workload and development complexity. This paper proposes a solution based on model-driven development. We propose representing functional usability mechanisms abstractly by means of conceptual primitives. The analyst will use these primitives to incorporate functional usability features at the early stages of the development process. Following the model-driven development paradigm, these features are then automatically transformed into subsequent steps of development, a practice that is hidden from the analyst.
Resumo:
Autonomous systems refer to systems capable of operating in a real world environment without any form of external control for extended periods of time. Autonomy is a desired goal for every system as it improves its performance, safety and profit. Ontologies are a way to conceptualize the knowledge of a specific domain. In this paper an ontology for the description of autonomous systems as well as for its development (engineering) is presented and applied to a process. This ontology is intended to be applied and used to generate final applications following a model driven methodology.
Resumo:
Mixed criticality systems emerges as a suitable solution for dealing with the complexity, performance and costs of future embedded and dependable systems. However, this paradigm adds additional complexity to their development. This paper proposes an approach for dealing with this scenario that relies on hardware virtualization and Model-Driven Engineering (MDE). Hardware virtualization ensures isolation between subsystems with different criticality levels. MDE is intended to bridge the gap between design issues and partitioning concerns. MDE tooling will enhance the functional models by annotating partitioning and extra-functional properties. System partitioning and subsystems allocation will be generated with a high degree of automation. System configuration will be validated for ensuring that the resources assigned to a partition are sufficient for executing the allocated software components and that time requirements are met.
Resumo:
We present a biomolecular probabilistic model driven by the action of a DNA toolbox made of a set of DNA templates and enzymes that is able to perform Bayesian inference. The model will take single-stranded DNA as input data, representing the presence or absence of a specific molecular signal (the evidence). The program logic uses different DNA templates and their relative concentration ratios to encode the prior probability of a disease and the conditional probability of a signal given the disease. When the input and program molecules interact, an enzyme-driven cascade of reactions (DNA polymerase extension, nicking and degradation) is triggered, producing a different pair of single-stranded DNA species. Once the system reaches equilibrium, the ratio between the output species will represent the application of Bayes? law: the conditional probability of the disease given the signal. In other words, a qualitative diagnosis plus a quantitative degree of belief in that diagno- sis. Thanks to the inherent amplification capability of this DNA toolbox, the resulting system will be able to to scale up (with longer cascades and thus more input signals) a Bayesian biosensor that we designed previously.
Resumo:
The aim of this study was to explore clinician reactions to (i) the introduction of routine outcome measures and (ii) the utility of outcomes data in clinical practice. Focus group discussions (n = 34) were conducted with mental health staff (n = 324) at approximately 8 months post implementation of routine outcome measures. A semi-structured interview schedule was used to collect data on two key issues; reactions to the introduction of outcome measures and factors influencing the utility of outcomes data in clinical practice. Data from the discussion groups were analysed using content analysis to isolate emerging themes. While the majority of participants endorsed the collection and utilization of outcomes data, many raised questions about the merits of the initiative. Ambivalence, competing work demands, lack of support from senior medical staff, questionable evidence to support the use of outcome measures, and fear of how outcomes data might be used emerged as key issues. At 8 months post implementation a significant number of clinical staff remained ambivalent about the benefits of outcome measurement and had not engaged in the process. The shift to a service model driven by outcomes and case-mix data will take time and resources to achieve. Implications for nursing staff are discussed.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
The aim of our work is to present solutions and a methodical support for automated techniques and procedures in domain engineering, in particular for variability modeling. Our approach is based upon Semantic Modeling concepts, for which semantic description, representation patterns and inference mechanisms are defined. Thus, model-driven techniques enriched with semantics will allow flexibility and variability in representation means, reasoning power and the required analysis depth for the identification, interpretation and adaptation of artifact properties and qualities.
Resumo:
Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on models@run.time held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.