881 resultados para Mitochondrial inheritance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new crosses involving four races (races 7, 16, 17, and 25) of the soybean root and stem rot pathogen Phytophthora sojae were established (7/16 cross; 17/25 cross). An F-2 Population derived from each cross was used to determine the genetic basis of avirulence towards 11 different resistance genes in soybean. Avirulence was found to be dominant and determined by a single locus for Avr1b, 1d, 1k, 3b, 4, and 6, as expected for a simple gene-for-gene model. We also observed several cases of segregation, inconsistent with a single dominant gene being solely responsible for avirulence, which suggests that the genetic background of the different crosses can affect avirulence. Avr4 and 6 cosegregated in both the 7/16 and 17/25 crosses and, in the 7/16 cross, Avr1b and 1k were closely linked. Information from segregating RAPD, RFLP, and AFLP markers screened on F-2 progeny from the two new crosses and two crosses described previously (a total of 212 F-2 individuals, 53 from each cross) were used to construct an integrated genetic linkage map of P. sojae. This revised genetic linkage map consists of 386 markers comprising 35 RFLP, 236 RAPD, and 105 AFLP markers, as well as 10 avirulence genes. The map is composed of 21 major linkage groups and seven minor linkage groups covering a total map distance of 1640.4 cM. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to similar to10 000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike other members of the genus, Echinococcus granulosus is known to exhibit considerable levels of variation in biology, physiology and molecular genetics. Indeed, some of the taxa regarded as 'genotypes' within E. granulosus might be sufficiently distinct as to merit specific status. Here, complete mitochondrial genomes are presented of 2 genotypes of E. granulosus (G1-sheep-dog strain: G4-horse-dog strain) and of another taeniid cestode, Taenia crassiceps. These genomes are characterized and compared with those of Echinococcus multilocularis and Hymenolepis diminuta. Genomes of all the species are very similar in structure, length and base-composition. Pairwise comparisons of concatenated protein-coding genes indicate that the G1 and G4 genotypes of E. granulosus are almost as distant from each other as each is from a distinct species, E. multilocularis. Sequences for the variable genes atp6 and nad3 were obtained from additional genotypes of E. granulosus, from E. vogeli and E. oligarthrus. Again, pairwise comparisons showed the distinctiveness of the G1 and G4 genotypes. Phylogenetic analyses of concatenated atp6, nad1 (partial) and cox1 (partial) genes from E. multilocularis, E. vogeli, E. oligarthrus, 5 genotypes of E. granulosus, and using T. crassiceps as an outgroup, yielded the same results. We conclude that the sheep-dog and horse-dog strains of E. granulosus should be regarded as distinct at the specific level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A radiation of five species of giant tortoises (Cylindraspis ) existed in the southwest Indian Ocean, on the Mascarene islands, and another (of Aldabrachelys ) has been postulated on small islands north of Madagascar, from where at least eight nominal species have been named and up to five have been recently recognized. Of 37 specimens of Madagascan and small-island Aldabrachelys investigated by us, 23 yielded significant portions of a 428-base-pair (bp) fragment of mitochondrial (cytochrome b and tRNA-Glu), including type material of seven nominal species (A. arnoldi, A. dussumieri, A. hololissa, A. daudinii, A. sumierei, A. ponderosa and A. gouffei ). These and nearly all the remaining specimens, including 15 additional captive individuals sequenced previously, show little variation. Thirty-three exhibit no differences and the remainder diverge by only 1-4 bp (0.23-0.93%). This contrasts with more widely accepted tortoise species which show much greater inter- and intraspecific differences. The non-Madagascan material examined may therefore only represent a single species and all specimens may come from Aldabra where the common haplotype is known to occur. The present study provides no evidence against the Madagascan origin for Aldabra tortoises suggested by a previous molecular phylogenetic analysis, the direction of marine currents and phylogeography of other reptiles in the area. Ancient mitochondrial DNA from the extinct subfossil A. grandidieri of Madagascar differs at 25 sites (5.8%) from all other Aldabrachelys samples examined here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idiosyncratic markers are features of genes and genomes that are so unusual that it is unlikely that they evolved more than once in a lineage of organisms. Here we explore further the potential of idiosyncratic markers and changes to typically conserved tRNA sequences for phylogenetic inference. Hard ticks were chosen as the model group because their phylogeny has been studied extensively. Fifty-eight candidate markers from hard ticks ( family Ixodidae) and 22 markers from the subfamily Rhipicephalinae sensu lato were mapped onto phylogenies of these groups. Two of the most interesting markers, features of the secondary structure of two different tRNAs, gave strong support to the hypothesis that species of the Prostriata ( Ixodes spp.) are monophyletic. Previous analyses of genes and morphology did not strongly support this relationship, instead suggesting that the Prostriata is paraphyletic with respect to the Metastriata ( the rest of the hard ticks). Parallel or convergent evolution was not found in the arrangements of mitochondrial genes in ticks nor were there any reversals to the ancestral arthropod character state. Many of the markers identified were phylogenetically informative, whereas others should be informative with study of additional taxa. Idiosyncratic markers and changes to typically conserved nucleotides in tRNAs that are phylogenetically informative were common in this data set, and thus these types of markers might be found in other organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To help understand the mechanisms of gene rearrangement in the mitochondrial (mt) genomes of hemipteroid insects, we sequenced the mt genome of the plague thrips, Thrips imaginis (Thysanoptera). This genome is circular, 15,407 by long, and has many unusual features, including (1) rRNA genes inverted and distant from one another, (2) an extra gene for tRNA-Ser, (3) a tRNA-Val lacking a D-arm, (4) two pseudo-tRNA genes, (5) duplicate control regions, and (6) translocations and/or inversions of 24 of the 37 genes. The mechanism of rRNA gene transcription in T. imaginis may be different from that of other arthropods since the two rRNA genes have inverted and are distant from one another. Further, the rRNA genes are not adjacent or even close to either of the two control regions. Tandem duplication and deletion is a plausible model for the evolution of duplicate control regions and for the gene translocations, but intramitochondrial recombination may account for the gene inversions in T. imaginis. All the 18 genes between control regions #1 and #2 have translocated and/or inverted, whereas only six of the 20 genes outside this region have translocated and/or inverted. Moreover, the extra tRNA gene and the two pseudo-tRNA genes are either in this region or immediately adjacent to one of the control regions. These observations suggest that tandem duplication and deletion may be facilitated by the duplicate control regions and may have occurred a number of times in the lineage leading to T. imaginis. T. imaginis shares two novel gene boundaries with a lepidopsocid species from another order of hemipteroid insects, the Psocoptera. The evidence available suggests that these shared gene boundaries evolved by convergence and thus are not informative for the interordinal phylogeny of hemipteroid insects. We discuss the potential of hemipteroid insects as a model system for studies of the evolution of animal rut genomes and outline some fundamental questions that may be addressed with this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hernipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one 2 another. We found that the correlation was positive and statistically significant (R-2 = 0.73, P = 0.01; R-s = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animais híbridos representam um desafio à taxonomia e sistemática, pois correspondem a unidades evolutivas geralmente sem clara delimitação morfológica, comportamental e genética. Híbridos podem ser morfologicamente intermediários aos parentais ou, devido à introgressão e retrocruzamentos, suas características podem se misturar tornando difícil sua identificação. Uma das formas de identificação de híbridos é por meio de ferramentas de biologia molecular, que ao utilizarem marcadores de DNA mitocondrial (herança exclusiva materna) e DNA nuclear (herança materna e paterna), permitem a comparação entre informações genéticas. Além da hibridização existem outras fontes de conflito entre dados moleculares provenientes do DNA mitocondrial e DNA nuclear, como por exemplo a retenção de polimorfismos ancentrais. Em localidades do Espírito Santo, Brasil, foram coletados indivíduos de morfologia distinta de Trachycephalus mesophaeus e T. nigromaculatus, que são as únicas espécies do gênero conhecidas nesse estado. Porém, estudos piloto usando o gene mitocondrial Citocromo Oxidase subunidade I (COI) agruparam esses espécimes com amostras de T. typhonius. Devido a estas incongruências, foram sequenciados fragmentos de dois genes mitocondriais - COI e Nicotinamida Desidrogenase subunidade 2 (ND2) e um exon nuclear (tirosinase) de 173 indivíduos de Trachycephalus, de forma a esclarecer as identificações taxonômicas e investigar a correspondência entre caracteres morfológicos e genéticos nesta linhagem, na sua área de ocorrência As filogenias moleculares, divergências genéticas, redes de haplótipos e polimorfismos de nucleotídeos únicos (SNPs) confirmaram as três espécies acima mencionadas como linhagens evolutivas distintas e revelaram mais sete indivíduos potencialmente híbridos, mas morfologicamente assinalados a T. mesophaeus, T. nigromaculatus ou T. typhonius.. Devido à taxa de evolução lenta da tirosinase, as espécies mais recentes T. typhonius e T. nigromaculatus parecem não terem sido sorteadas completamente nesse gene. Já T. mesophaeus, que é a espécie mais antiga das três, foi recuperada inequivocamente em todas as análises. De forma inédita, as análises moleculares evidenciaram a ocorrência de introgressão bidirecional entre T. nigromaculatus e T. typhonius e entre T. nigromaculatus e T. mesophaeus, sendo que há indícios de indivíduos F1 (cruzamentos entre espécies parentais puras gerando híbridos). A utilização do gene ND2 mostrou-se mais eficiente do que o gene COI nas filogenias e, apesar da tirosinase ser um gene nuclear de evolução lenta, contribuiu para a identificação de incongruências citonucleares. Nossos resultados mostram que a história filogenética de Trachycephalus é complexa e que o uso de marcadores nucleares de evolução mais rápida e ampliação dessas análises para outras espécies do gênero podem revelar mais eventos de hibridização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright: © 2014 Rodrigues et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging is a long-standing biological question of tremendous social and cultural importance. Despite this, only in the last 15 years has biology started to make significant progress in understanding the underlying mechanisms that regulate aging. This progress stemmed mainly from the use of model organisms, which allowed the discovery of several genes directly modulating longevity. Interestingly, several of these longevity genes are necessary for normal mitochondrial function, and disruption of their activity delays the aging process. This is somewhat paradoxical, considering the importance of cellular respiration for energy production and viability of eukaryotic organisms. One possible rationalization for this is that by decreasing cellular respiration, reactive oxygen species (ROS) generation is also reduced, and in that way, cellular decay and aging are delayed.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.