993 resultados para Mineral chemistry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To better understand the composition, characteristics of helium diffusion, and size distribution of interplanetary dust particles (IDPs) responsible for the long-term retention of extraterrestrial 3He, we carried out leaching, stepped heating, and sieving experiments on pelagic clays that varied in age from 0.5 Ma to ~90 Myr. The leaching experiments suggest that the host phase(s) of 3He in geologically old sediments are neither organic matter nor refractory phases, such as diamond, graphite, Al2O3, and SiC, but are consistent with extraterrestrial silicates, Fe-Ni sulfides, and possibly magnetite. Stepped heating experiments demonstrate that the 3He release profiles from the magnetic and non-magnetic components of the pelagic clays are remarkably similar. Because helium diffusion is likely to be controlled by mineral chemistry and structure, the stepped heating results suggest a single carrier that may be magnetite, or more probably a phase associated with magnetite. Furthermore, the stepped outgassing experiments indicate that about 20% of the 3He will be lost through diffusion at seafloor temperatures after 50 Myrs, while sedimentary rocks exposed on the Earth's surface for the same amount of time would lose up to 60%. The absolute magnitude of the 3He loss is, however, likely to depend upon the 3He concentration profile within the IDPs, which is not well known. Contrary to previous suggestions that micrometeorites in the size range of 50-100 µm in diameter are responsible for the extraterrestrial 3He in geologically old sediments [Stuart, F.M., Harrop, P.J., Knott, S., Turner, G., 1999. Laser extraction of helium isotopes from Antarctic micrometeorites: source of He and implications for the flux of extraterrestrial 3He flux to earth. Geochimica et Cosmochimica Acta, 63, 2653-2665, doi:10.1016/S0016-7037(99)00161-1], our sieving experiment demonstrates that at most 20% of the 3He is carried by particles greater than 50 µm in diameter. The size-distribution of the 3He-bearing particles implies that extraterrestrial 3He in sediments record the IDP flux rather than the micrometeorite flux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental phase relations were used to assess the role of volatiles and crustal level fractional crystallization in the petrogenesis of lavas from Hole 839B in the central Lau Basin. Melting experiments were performed on Sample 135-839B-15R-2, 63-67 cm, at 1 atm, anhydrous, and 2 kbar, H2O-saturated (~6 wt% H2O in the melt) to determine the influence of variable pressure and H2O content on phase appearances, mineral chemistry, and liquid line of descent followed during crystallization. The effects of H2O are to depress the liquidus by ~100°C, and to suppress crystallization of plagioclase and orthopyroxene relative to olivine and high-Ca clinopyroxene. At 1 atm, anhydrous, olivine and plagioclase coexist near the liquidus, whereas orthopyroxene and then clinopyroxene appear with decreasing temperature. Crystallization of 50 wt% produces a residual liquid that is rich in FeO* (10.8 wt%) and poor in Al2O3 (13.6 wt%). At 2 kbar, H2O-saturated, the liquidus phases are olivine and chromian spinel, with high-Ca clinopyroxene appearing after ~10% crystallization. Plagioclase saturation is suppressed until ~20% crystallization has occurred. The residual liquid from 35 wt% crystallization is rich in AI2O3 (17.4 wt%), and poor in MgO (4.82 wt%); it contains moderate FeO* (8.2 wt%), and resembles the low-MgO andesites recovered from Hole 839B. On the basis of these experiments we conclude that the primitive lavas recovered from Hole 839B have experienced crystallization along the Ol + Cpx saturation boundary, under hydrous conditions (an ankaramitic liquid line of descent), and variable amounts of olivine and chromian spinel accumulation. The low-MgO andesites from Hole 839B are the products of hydrous fractional crystallization, at crustal pressures, of a parent magma similar to basaltic andesite Sample 135-839B-15R-2, 63-67 cm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rock samples from Hole 735B, Southwest Indian Ridge, were examined to determine the principal vein-related types of alteration that occurred, the nature of fluids that were present, and the temperatures and pressures of these fluids. Samples studied included veined metagabbro, veined mylonitic metagabbro, felsic trondhjemite, and late-stage leucocratic diopside-bearing veins. The methods used were standard petrographic analysis, mineral chemical analysis by electron microprobe, fluid inclusion petrography and analysis by heating/freezing techniques and laser Raman microspectroscopy, and oxygen isotopic analyses of mineral separates. Alteration in lithologic Units I and II (above the level of Core 118-735B-3OR; approximately 140 meters below the seafloor) is dominated by hydration by seawater-derived fluids at high temperature, up to about 700°C, and low water/rock ratio, during and immediately after pervasive ductile deformation. Below Core 118-735B-30R, pervasive deformation is less common, and brittle veining and brecciation are the major alteration styles. Leucocratic centimeter-scale veins, often containing diopside and plagioclase, were produced by interaction of hot (about 500°C) seawater-derived fluid and gabbro. The water/rock ratio was locally high at the veins and breccia zones, but the integrated water/rock ratio for the lower part of the hole is probably low. Accessory hydrous magmatic or deuteric phases formed from magmatic volatiles in some gabbro and in trondhjemite. Most subsequent alteration was affected by fluids that were seawater-derived, based on isotopic and chemical analyses of minerals and analyses of fluid inclusions. Many early-generation fluid inclusions, associated with high-temperature veining, contain appreciable methane as well as saline water. The source of methane is unclear, but it may have formed as seawater was reduced during low water/rock interaction with ultramafic upper mantle or ultramafic and mafic layer 3. Temperatures of alteration were calculated on the basis of coexisting mineral chemistry and isotopic values. Hydrothermal metamorphism commenced at about 720°C and continued to about 550°C. Leucocratic veining took place at about 500°C. Alteration within brecciated horizons was also at about 500° to less than 400°C, and the trondhjemite was altered at about 550° to below 490°C. Pressures calculated from a diopside-bearing vein, based on a combination of fluid inclusion and isotopic analysis, were 90 to 100 MPa. This pressure places the sample, from Core 118-735B-70R in Unit V, at about 2 km below the seafloor.