984 resultados para Millimeter waves
Resumo:
A defining characteristic of fractured rocks is their very high level of seismic attenuation, which so far has been assumed to be mainly due to wave-induced fluid flow (WIFF) between the fractures and the pore space of the embedding matrix. Using oscillatory compressibility simulations based on the quasi-static poroelastic equations, we show that another important, and as of yet undocumented, manifestation of WIFF is at play in the presence of fracture connectivity. This additional energy loss is predominantly due to fluid flow within the connected fractures and is sensitive to their lengths, permeabilities, and intersection angles. Correspondingly, it contains key information on the governing hydraulic properties of fractured rock masses and hence should be accounted for whenever realistic seismic models of such media are needed.
Resumo:
Shoreline undulations extending into the bathymetric contours with a length scale larger than that of the rhythmic surf zone bars are referred to as shoreline sand waves. Many observed undulations along sandy coasts display a wavelength in the order 1-7 km. Several models that are based on the hypothesis that sand waves emerge from a morphodynamic instability in case of very oblique wave incidence predict this range of wavelengths. Here we investigate the physical reasons for the wavelength selection and the main parametric trends of the wavelength in case of sand waves arising from such instability. It is shown that the existence of a minimum wavelength depends on an interplay between three factors affecting littoral drift: (A) the angle of wave fronts relative to local shoreline, which tends to cause maximum transport at the downdrift flank of the sand wave, (B) the refractive energy spreading which tends to cause maximum transport at the updrift flank and (C) wave focusing (de-focusing) by the capes (bays), which tends to cause maximum transport at the crest or slightly downdrift of it. Processes A and C cause decay of the sand waves while process B causes their growth. For low incidence angles, B is very weak so that a rectilinear shoreline is stable. For large angles and long sand waves, B is dominant and causes the growth of sand waves. For large angles and short sand waves C is dominant and the sand waves decay. Thus, wavelength selection depends on process C, which essentially depends on shoreline curvature. The growth rate of very long sand waves is weak because the alongshore gradients in sediment transport decrease with the wavelength. This is why there is an optimum or dominant wavelength. It is found that sand wave wavelength scales with λ0/β where λ0 is the water wave wavelength in deep water and β is the mean bed slope from shore to the wave base.
Resumo:
Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non-neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate-responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell-specific, robust, real-time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant-herbivore interactions.
Resumo:
On 21 April 2007, an Mw 6.2 earthquake produced an unforeseen chain of events in the Aysén fjord (Chilean Patagonia, 45.5°S). The earthquake triggered hundreds of subaerial landslides along the fjord flanks. Some of the landslides eventually involved a subaqueous component that, in turn, generated a series of displacement waves tsunami- like waves produced by the fast entry of a ubaerial landmass into a water body within the fjord [Naranjo et al., 2009; Sepúlveda and Serey, 2009; Hermanns et al., 2013]. These waves, with run-ups several meters high along the shoreline, caused 10 fatalities. In addition, they severely damaged salmon farms, which constitute the main economic activity in the region, setting free millions of cultivated salmon with still unknown ecological consequences.
Resumo:
We describe the case of a man with a history of complex partial seizures and severe language, cognitive and behavioural regression during early childhood (3.5 years), who underwent epilepsy surgery at the age of 25 years. His early epilepsy had clinical and electroencephalogram features of the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia (Landau-Kleffner syndrome), which we considered initially to be of idiopathic origin. Seizures recurred at 19 years and presurgical investigations at 25 years showed a lateral frontal epileptic focus with spread to Broca's area and the frontal orbital regions. Histopathology revealed a focal cortical dysplasia, not visible on magnetic resonance imaging. The prolonged but reversible early regression and the residual neuropsychological disorders during adulthood were probably the result of an active left frontal epilepsy, which interfered with language and behaviour during development. Our findings raise the question of the role of focal cortical dysplasia as an aetiology in the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia.
Resumo:
We present a novel numerical algorithm for the simulation of seismic wave propagation in porous media, which is particularly suitable for the accurate modelling of surface wave-type phenomena. The differential equations of motion are based on Biot's theory of poro-elasticity and solved with a pseudospectral approach using Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. The time solver is a splitting algorithm that accounts for the stiffness of the differential equations. Due to the Chebyshev operator the grid spacing in the vertical direction is non-uniform and characterized by a denser spatial sampling in the vicinity of interfaces, which allows for a numerically stable and accurate evaluation of higher order surface wave modes. We stretch the grid in the vertical direction to increase the minimum grid spacing and reduce the computational cost. The free-surface boundary conditions are implemented with a characteristics approach, where the characteristic variables are evaluated at zero viscosity. The same procedure is used to model seismic wave propagation at the interface between a fluid and porous medium. In this case, each medium is represented by a different grid and the two grids are combined through a domain-decomposition method. This wavefield decomposition method accounts for the discontinuity of variables and is crucial for an accurate interface treatment. We simulate seismic wave propagation with open-pore and sealed-pore boundary conditions and verify the validity and accuracy of the algorithm by comparing the numerical simulations to analytical solutions based on zero viscosity obtained with the Cagniard-de Hoop method. Finally, we illustrate the suitability of our algorithm for more complex models of porous media involving viscous pore fluids and strongly heterogeneous distributions of the elastic and hydraulic material properties.
Resumo:
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move
Resumo:
In this paper we use a Terahertz (THz) time-domain system to image and analyze the structure of an artwork attributed to the Spanish artist Goya painted in 1771. The THz images show features that cannot be seen with optical inspection and complement data obtained with X-ray imaging that provide evidence of its authenticity, which is validated by other independent studies. For instance, a feature with a strong resemblance with one of Goya"s known signatures is seen in the THz images. In particular, this paper demonstrates the potential of THz imaging as a complementary technique along with X-ray for the verification and authentication of artwork pieces through the detection of features that remain hidden to optical inspection.
Resumo:
In this paper we use a Terahertz (THz) time-domain system to image and analyze the structure of an artwork attributed to the Spanish artist Goya painted in 1771. The THz images show features that cannot be seen with optical inspection and complement data obtained with X-ray imaging that provide evidence of its authenticity, which is validated by other independent studies. For instance, a feature with a strong resemblance with one of Goya"s known signatures is seen in the THz images. In particular, this paper demonstrates the potential of THz imaging as a complementary technique along with X-ray for the verification and authentication of artwork pieces through the detection of features that remain hidden to optical inspection.
Resumo:
Aim: To summarize published findings in peer-reviewed journals of the first two waves of the Swiss Cohort Study on Substance Use Risk Factors (C-SURF), a longitudinal study assessing risk and protective factors of 5,987 young men during the phase of emerging adulthood (20 years at baseline, followed-up 15 months later). Methods: Included were 33 studies published until November 2014 focusing on substance use. Results: Substance use in early adulthood is a prevalent and stable behavior. The 12-month prevalence of nonmedical use of prescription drugs (10.6%) lies between that of cannabis (36.4%) and other illicit drugs such as ecstasy (3.7%) and cocaine (3.2%). Although peer pressure in the form of misconduct is associated with increased substance use, other aspects such as peer involvement in social activities may have beneficial effects. Regular sport activities are associated with reduced substance use, with the exception of alcohol use. Young men are susceptible to structural conditions such as the price of alcohol beverages or the density of on-premise alcohol outlets. Particularly alcohol use in public settings such as bars, discos or in parks (compared with private settings such as the home) is associated with alcohol-related harm, including injuries or violence. Being a single parent versus nuclear family has no effect on alcohol use, but active parenting does. Besides parenting, religiousness is an important protective factor for both legal and illegal substance use. Merely informing young men about the risks of substance use may not be an effective preventive measure. At-risk users of licit and illicit substances are more health literate, e. g., for example, they seek out more information on the internet than non-at-risk-users or abstainers. Discussion: There are a number of risk and protective substance use factors, but their associations with substance use do not necessarily agree with those found outside Europe. In the United States, for example, heavy alcohol use in this age group commonly takes place in private settings, whereas in Switzerland it more often takes place in public settings. Other behaviors, such as the nonmedical use of prescription drugs, appear to be similar to those found overseas, which may show the need for targeted preventive actions. C-SURF findings point to the necessity of establishing European studies to identify factors for designing specific preventive actions.
Resumo:
A comparison is established between the contributions of transverse and longitudinal components of both the propagating and the evanescent waves associated to freely propagating radially polarized nonparaxial beams. Attention is focused on those fields that remain radially polarized upon propagation. In terms of the plane-wave angular spectrum of these fields, analytical expressions are given for determining both the spatial shape of the above components and their relative weight integrated over the whole transverse plane. The results are applied to two kinds of doughnut-like beams with radial polarization, and we compare the behavior of such fields at two transverse planes.
Resumo:
This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted
Resumo:
The causal mechanism and seasonal evolution of the internal wave field in a deep, warm, monomictic reservoirare examined through the analysis of field observations and numerical techniques. The study period extends fromthe onset of thermal stratification in the spring until midsummer in 2005. During this time, wind forcing wasperiodic, with a period of 24 h (typical of land–sea breezes), and the thermal structure in the lake wascharacterized by the presence of a shallow surface layer overlying a thick metalimnion, typical of small to mediumsized reservoirs with deep outtakes. Basin-scale internal seiches of high vertical mode (ranging from mode V3 toV5) were observed in the metalimnion. The structure of the dominant modes of oscillation changed asstratification evolved on seasonal timescales, but in all cases, their periods were close to that of the local windforcing (i.e., 24 h), suggesting a resonant response. Nonresonant oscillatory modes of type V1 and V2 becamedominant after large frontal events, which disrupted the diurnal periodicity of the wind forcing
Resumo:
The wave-of-advance model has been previously applied to Neolithic human range expansions, yielding good agreement to the speeds inferred from archaeological data. Here, we apply it for the first time to Palaeolithic human expansions by using reproduction and mobility parameters appropriate to hunter-gatherers (instead of the corresponding values for preindustrial farmers). The order of magnitude of the predicted speed is in agreement with that implied by the AMS radiocarbon dating of the lateglacial human recolonization of northern Europe (14.2–12.5 kyr BP). We argue that this makes it implausible for climate change to have limited the speed of the recolonization front. It is pointed out that a similar value for the speed can be tentatively inferred from the archaeological data on the expansion of modern humans into the Levant and Europe (42–36 kyr BP)