448 resultados para Midline Glia
Resumo:
The motivation for this paper is to present procedures for automatically creating idealised finite element models from the 3D CAD solid geometry of a component. The procedures produce an accurate and efficient analysis model with little effort on the part of the user. The technique is applicable to thin walled components with local complex features and automatically creates analysis models where 3D elements representing the complex regions in the component are embedded in an efficient shell mesh representing the mid-faces of the thin sheet regions. As the resulting models contain elements of more than one dimension, they are referred to as mixed dimensional models. Although these models are computationally more expensive than some of the idealisation techniques currently employed in industry, they do allow the structural behaviour of the model to be analysed more accurately, which is essential if appropriate design decisions are to be made. Also, using these procedures, analysis models can be created automatically whereas the current idealisation techniques are mostly manual, have long preparation times, and are based on engineering judgement. In the paper the idealisation approach is first applied to 2D models that are used to approximate axisymmetric components for analysis. For these models 2D elements representing the complex regions are embedded in a 1D mesh representing the midline of the cross section of the thin sheet regions. Also discussed is the coupling, which is necessary to link the elements of different dimensionality together. Analysis results from a 3D mixed dimensional model created using the techniques in this paper are compared to those from a stiffened shell model and a 3D solid model to demonstrate the improved accuracy of the new approach. At the end of the paper a quantitative analysis of the reduction in computational cost due to shell meshing thin sheet regions demonstrates that the reduction in degrees of freedom is proportional to the square of the aspect ratio of the region, and for long slender solids, the reduction can be proportional to the aspect ratio of the region if appropriate meshing algorithms are used.
Resumo:
Aims/hypothesis: The impact of AGEs and advanced lipoxidation end-products (ALEs) on neuronal and Müller glial dysfunction in the diabetic retina is not well understood. We therefore sought to identify dysfunction of the retinal Müller glia during diabetes and to determine whether inhibition of AGEs/ALEs can prevent it.
Methods: Sprague-Dawley rats were divided into three groups: (1) non-diabetic; (2) untreated streptozotocin-induced diabetic; and (3) diabetic treated with the AGE/ALE inhibitor pyridoxamine for the duration of diabetes. Rats were killed and their retinas were evaluated for neuroglial pathology. Results: AGEs and ALEs accumulated at higher levels in diabetic retinas than in controls (p<0.001). AGE/ALE immunoreactivity was significantly diminished by pyridoxamine treatment of diabetic rats. Diabetes was also associated with the up-regulation of the oxidative stress marker haemoxygenase-1 and the induction of glial fibrillary acidic protein production in Müller glia (p<0.001). Pyridoxamine treatment of diabetic rats had a significant beneficial effect on both variables (p<0.001). Diabetes also significantly altered the normal localisation of the potassium inwardly rectifying channel Kir4.1 and the water channel aquaporin 4 to the Müller glia end-feet interacting with retinal capillaries. These abnormalities were prevented by pyridoxamine treatment.
Conclusions/interpretation: While it is established that AGE/ALE formation in the retina during diabetes is linked to microvascular dysfunction, this study suggests that these pathogenic adducts also play a role in Müller glial dysfunction.
Resumo:
Aims/hypothesis
Methylglyoxal (MG) is an important precursor for AGEs. Normally, MG is detoxified by the glyoxalase (GLO) enzyme system (including component enzymes GLO1 and GLO2). Enhanced glycolytic metabolism in many cells during diabetes may overpower detoxification capacity and lead to AGE-related pathology. Using a transgenic rat model that overexpresses GLO1, we investigated if this enzyme can inhibit retinal AGE formation and prevent key lesions of diabetic retinopathy.
Methods
Transgenic rats were developed by overexpression of full length GLO1. Diabetes was induced in wild-type (WT) and GLO1 rats and the animals were killed after 12 or 24 weeks of hyperglycaemia. N e-(Carboxyethyl)lysine (CEL), N e-(carboxymethyl)lysine (CML) and MG-derived-hydroimidazalone-1 (MG-H1) were determined by immunohistochemistry and by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MSMS). Müller glia dysfunction was determined by glial fibrillary acidic protein (GFAP) immunoreactivity and by spatial localisation of the potassium channel Kir4.1. Acellular capillaries were quantified in retinal flat mounts.
Results
GLO1 overexpression prevented CEL and MG-H1 accumulation in the diabetic retina when compared with WT diabetic counterparts (p?<?0.01). Diabetes-related increases in Müller glial GFAP levels and loss of Kir4.1 at the vascular end-feet were significantly prevented by GLO1 overexpression (p?<?0.05) at both 12- and 24-week time points. GLO1 diabetic animals showed fewer acellular capillaries than WT diabetic animals (p?<?0.001) at 24 weeks’ diabetes.
Conclusions/interpretation
Detoxification of MG reduces AGE adduct accumulation, which, in turn, can prevent formation of key retinal neuroglial and vascular lesions as diabetes progresses. MG-derived AGEs play an important role in diabetic retinopathy.
Resumo:
Previous studies have shown that following whole-body irradiation bone marrow (BM)-derived cells can migrate into the central nervous system, including the retina, to give rise to microglia-like cells. The detailed mechanism, however, remains elusive. We show in this study that a single-dose whole-body ?-ray irradiation (8 Gy) induced subclinical damage (i.e., DNA damage) in the neuronal retina, which is accompanied by a low-grade chronic inflammation, para-inflammation, characterized by upregulated expression of chemokines (CCL2, CXCL12, and CX3CL1) and complement components (C4 and CFH), and microglial activation. The upregulation of chemokines CCL2 and CXCL12 and complement C4 lasted for more than 160 days, whereas the expression of CX3CL1 and CFH was upregulated for 2 weeks. Both resident microglia and BM-derived phagocytes displayed mild activation in the neuronal retina following irradiation. When BM cells from CX3CR1gfp/+ mice or CX3CR1gfp/gfp mice were transplanted to wild-type C57BL/6 mice, more than 90% of resident CD11b+ cells were replaced by donor-derived GFP+ cells after 6 months. However, when transplanting CX3CR1gfp/+ BM cells into CCL2-deficient mice, only 20% of retinal CD11b+ cells were replaced by donor-derived cells at 6 month. Our results suggest that the neuronal retina suffers from a chronic stress following whole-body irradiation, and a para-inflammatory response is initiated, presumably to rectify the insults and maintain homeostasis. The recruitment of BM-derived myeloid cells is a part of the para-inflammatory response and is CCL2 but not CX3CL1 dependent. © 2012 Wiley Periodicals, Inc.
Resumo:
The ultrastructure of the nervous system of a planarian, Procerodes littoralis, belonging to the taxon Maricola is described for the first time. The study has revealed the presence of two neuronal cell types and a glia-like cell. Immunogold labelling with antibodies to two native flatworm neuropeptides-neuropeptide F and GNFFRFamide-has been localised to one neuronal cell type and associated processes and synapses, thus indicating its peptidergic nature. The ultrastructural features are compared to those of other investigated turbellarian species. The number of features shared by species from the Proseriata, Lecitoepitheliata and Tricladida show that in respect of the nervous system these taxa form a closely related group. (C) 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.
Resumo:
Decompressive hemicraniectomy has been used increasingly in recent years to treat malignant middle cerebral artery territory infarction. This review examines functional outcome data, with the novel analysis of outcomes according to temporal periods post-surgery. Case series data were pooled to determine significant correlates of outcome. Severe disability was frequently the outcome among survivors within one month post-surgery. Time and rehabilitation were later reflected, with fewer deaths and the emergence of mild to moderate disability increasing in prevalence. Mortality and severe disability were consistently more probable with increasing age. Presurgical clinical status in the form of additional cerebral artery involvement and midline shift also correlated with mortality within the 30-day period post-stroke.
Resumo:
Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.
Resumo:
The combined effect of STZ-diabetes and ionising radiation on the rat retina was investigated. Wistar rats, which had been diabetic for 6 months, were irradiated with a single dose of x-rays (1500 cGy) and the ultrastructural effects evaluated at 4-10 mths post-irradiation. At 4 months post-irradiation, the outer nuclear layer of the retina was greatly reduced in thickness and the photoreceptor outer segments were disorganised and reduced in length. In addition, the nerve fibre layer contained many cytoid bodies and there were many redundant basement membrane tubes throughout the inner retina. By 6 months post-irradiation, the photoreceptor cells were virtually absent, bringing the external limiting membrane into close apposition to the RPE. Throughout large areas of the outer retina, RPE cells were hypertrophic and some had proliferated into the inner retina. In many regions, proliferating retinal capillaries were observed within the RPE layer, and at 8 months post-irradiation, some vessels extended into the inner retina accompanied by RPE cells. At 10 months post-irradiation, the RPE was atrophic and degenerative with retinal glial cells coming into contact with Bruch's membrane. In some areas, the glia which had breached Bruch's membrane had invaded the underlying choroid. Where glial cells contacted the choriocapillaries, the vessels assumed the appearance of retinal vessels with plump endothelia and no fenestrations. This study has described a progressive inner retinal ischemia, with cytoid bodies, capillary non-perfusion and general atrophy of the inner retina intensifying markedly with increasing post-irradiation time.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Objectives: A detailed investigation of the gross and microscopic anatomy of ligamentum flavum. Methods: Material included 14 lumbar vertebral columns obtained from the Anatomy Department, King Faisal University, Dammam during the period between January 2005 and January 2006. Height, width, and thickness of ligamenta flava were measured. A microscopic study was also performed. Computed tomography scan was carried out on the lumbar vertebrae of 30 patients for measuring the ligamentum flavum. Results: The anatomical results showed that the right and left ligamenta flava join in the midline forming an acute angle with a ventral opening. The ligamentum flavum is rectangular and has 4 borders and 2 surfaces. It is attached inferiorly to the superior edge and the postero-superior surface of the lamina below. It is attached superiorly to the inferior edge and the antero-inferior surface of the lamina above. Its height ranges from 14-22 mm. The width of its lower part ranges from 11-23 mm, and the thickness ranges from 3.5-6 mm. The histological results revealed that it is comprised chiefly of elastic fibres and some collagen fibres. Conclusion: The information reported in this study is of clinical value in the practice of lumbar epidural anesthesia or analgesia. Epidural puncture will be best performed through the lower and medial portion of the ligamentum flavum slightly lateral to the midline.
Resumo:
Aims/hypothesis
The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy.
Methods
Diabetes was induced in wild-type (WT) and Rage −/− mice (also known as Ager −/− mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined.
Results
Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (p < 0.01) but not after 24 weeks. Rage −/− mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage −/− mice showed significantly less vasopermeability, leucostasis and microglial activation (p < 0.05–0.001). Rage −/− mice were also protected against diabetes-related retinal acellular capillary formation (p < 0.001) but not against pericyte loss.
Conclusions/interpretation Rage −/− in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.
Resumo:
Contemporary studies of spatial and social cognition frequently use human figures as stimuli. The interpretation of such studies may be complicated by spatial compatibility effects that emerge when researchers employ spatial responses, and participants spontaneously code spatial relationships about an observed body. Yet, the nature of these spatial codes – whether they are location- or object-based, and coded from the perspective of the observer or the figure – has not been determined. Here, we investigated this issue by exploring spatial compatibility effects arising for objects held by a visually presented whole-bodied schematic human figure. In three experiments, participants responded to the colour of the object held in the figure’s left or right hand, using left or right key presses. Left-right compatibility effects were found relative to the participant’s egocentric perspective, rather than the figure’s. These effects occurred even when the figure was rotated by 90 degrees to the left or to the right, and the coloured objects were aligned with the participant’s midline. These findings are consistent with spontaneous spatial coding from the participant’s perspective and relative to the normal upright orientation of the body. This evidence for object-based spatial coding implies that the domain general cognitive mechanisms that result in spatial compatibility effects may contribute to certain spatial perspective-taking and social cognition phenomena.
Resumo:
The fact that the adult brain is able to produce new neurons or glial cells from neural stem cells (NSC) became one of the most interesting and challenging fields of research in neuroscience. Endogenous adult neurogenesis occurs in two main regions of the brain: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus. Brain injury may be accompanied by increased neurogenesis, although neuroinflammation promotes the activation of microglial cells that can be detrimental to the neurogenic process. Nitric oxide (NO) is one of the factors released by microglia that can be proneurogenic. The mechanism by which NO promotes the proliferation of NSCs has been intensively studied. However, little is known about the role of NO in migration, survival and differentiation of the newborn cells. The aim of this work was to investigate the role of NO from inflammatory origin in proliferation, migration, differentiation and survival of NSCs from the dentate gyrus in a mouse model of status epilepticus. We also assessed neuroinflammation in the same injury model. Our work showed that NO increased proliferation of the early-born cells after seizures, but is detrimental for their survival. NO also increased migration of neuroblasts. Moreover, NO was important to maintain long-term neuroinflammation. Taken together, these results show that NO may be a good target to promote proliferation and migration of NSCs following seizures, but compromises survival of early-born cells.
Resumo:
Clinical history - A 4-year-old boy, born prematurely at 29 weeks (twin pregnancy), with periventricular leukomalacia and epilepsy underwent brain MRI. Neurological examination showed severe developmental retardation with axial hypotonia, spastic tetraparesis and convergent strabismus. Imaging findings - Cranial MRI revealed typical aspects of partial rhombencephalosynapsis with vermian hypoplasia, midline fusion of the cerebellar hemispheres and transversely oriented folia and fissures. There was also mild dilatation and dysmorphism of the ventricular system, the septum pellucidum was absent, the hippocampi were malrotated and had vertical orientation and additional finding of associated periventricular cystic leukomalacia. Discussion - Rhombencephalosynapsis (RS) is a rare congenital defect of the cerebellum classically characterised by vermian agenesis or hypogenesis, fusion of the hemispheres, and closely apposed or fused dentate nuclei. It is now considered to result from an absence of division of the cerebellar hemispheres, following an insult between the 28th and 44th day of gestation (i.e., before the formation of the vermis). Other features have also been described such as fusion of the thalami and cerebral peduncles, malrotated hippocampi, corpus callosum agenesis, hypoplastic chiasm, absence of the septum pellucidum, ventriculomegaly, agenesis of the posterior lobe of the pituitary and cortical malformations. Musculoskeletal, cardiovascular, urinary tract, and respiratory abnormalities have been reported. Typical symptoms consist of swallowing difficulties, delayed motor acquisitions, muscular hypotonia, spastic quadriparesis, cerebellar signs including dysarthria, gait ataxia, abnormal eye movements, and seizures and hydrocephalus. The major MRI signs consist of fused cerebellar hemispheres, with absent or hypoplastic vermis, narrow diamond-shaped fourth ventricle and fused dentate nuclei. In a minority of cases, partial RS has been identified by MRI, demonstrating the presence of the nodulus and the anterior vermis and absence of part of the posterior vermis with only partial fusion of the hemispheres in the inferior part. Other cerebellar malformations involving vermian agenesis or hypoplasia include the Dandy–Walker continuum, Joubert syndrome, tectocerebellar dysraphy or pontocerebellar hypoplasias, and are now easily distinguished from RS by both brain MRI and morphology.
Resumo:
RESUMO: A isquémia cerebral é uma das doenças mais predominantes a nivel mundial, sendo uma das principais causas de mortalidade e invalidez. Parte da propagação de dano no cérebro é causado por inflamação descontrolada, causada principalmente por disfunção da microglia. Desta forma, existe a necessidade de tentar desenvolver estratégias para melhor compreender e modular as acções destas células. O monóxido de carbono (CO), é uma molécula endógena com provas dadas como anti-neuroinflamatório em vários modelos. Assim, o principal objectivo do trabalho foi o estudo do CO como um modulador da acção da microglia, com principal foco dado à comunicação entre estas células e neurónios, tentando entender se existe um efeito neuroprotector por inibição da inflamação. Um protocolo de meio condicionado foi estabelecido usando as linhas celulares BV2 e SH-SY5Y, de microglia e neurónio. A molécula CORM-A1, que liberta expontaniamente CO, foi usada como método de entrega da molécula às celulas. Demonstrámos que o pre-tratamento de células BV2 com CORM-A1 gera neuroprotecção já que reduz a morte celular de neurónios SH-SY5Y quando são incubados com meio condicionado de microglia activada em conjunto com o pró-oxidante t-BHP (tert-butil hidroperóxido). Assim, considerámos que o CO promove neuroprotecção ao inibir as acções inflamatórias da microglia. O papel anti-inflamatório da molécula CORM-A1 foi confirmado quando se verificou que pré-tratamento desta molécula em microglia BV2 limita a secreção de TNF-α mas estimula a secreção de IL-10. Por último, a CORM-A1 induziu a expressão do receptor da microglia CD200R1, molécula que participa na comunicação neurónio-microglia e fundamental para a modulação das acções inflamatórias destas últimas. Em suma, o nosso trabalho reforçou as propriedades anti-neuroinflamatórias do CO e uma capacidade de modular viabilidade neuronal através do seu efeito a nível de comunicação célula-célula. ---------------------------- ABSTRACT: Brain ischemia is a widespread disease worldwide, being one of the main causes of mortality and permanent disability. A portion of the damage that ensues following the ischemic event is caused by unrestrained inflammation, which is mainly orchestrated by exacerbated microglial activity. Hence, developing strategies for modulating microglial inflammation is a major concern nowadays. The endogenous molecule carbon monoxide (CO) has been shown to possess anti-neuroinflammatory properties using in vitro and in vivo approaches. Thus, our objective was to study CO as modulator of microglial activity, in particular in what concerns their communication with neurons, by promoting neuronal viability and limiting inflammatory output of activated microglia. A conditioned media strategy was established with BV2 microglia and SH-SY5Y neurons as cell models. CO-releasing molecule A1 (CORM-A1), a compound that releases CO spontaneously, was used as method of CO delivery to cells. We found that CORM-A1 pre-treatment in BV2 cells yields neuroprotective results, as it limits cell death when SH-SY5Y neurons are challenged with conditioned media from LPS-activated microglia and the pro-oxidant t-BHP (tert-butyl-hydroperoxide). Thus, we assumed carbon monoxide promotes neuroprotection via inhibition of microglial inflammation, displaying a non-cell autonomous role. CORM-A1 pre-treatment limited inflammation by inhibiting BV2 secretion of TNF-α and stimulating IL-10 production. These results reinforce that CO’s anti-inflammatory role confers neuroprotection, as the alterations in these cytokines occur concurrently with the increase in SH-SY5Y viability. Finally, we showed for the first time that carbon monoxide promotes the expression of CD200R1, a microglial receptor involved in neuron-glia communication and modulation of microglia inflammation. Further studies are necessary to clarify this role. Altogether, other than just highlighting CO as an anti-inflammatory and neuroprotective molecule, this work set the foundation for disclosing its involvement in cell-to-cell communication.
Resumo:
Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.