957 resultados para Microwave drying
Resumo:
Bundle of capillaries, drying kinetics, continuous model, relative permeability, capillary pressure, control volume method
Resumo:
Magdeburg, Univ., Diss., 2007 (Nicht für den Austausch)
Resumo:
Complex Microwave Structures Wake Field Computatation PETRA III Generalized Multipole Technique Antenna Antennen Wakefelder Berechnung
Resumo:
Accurate estimates of water losses by evaporation from shallow water tables are important for hydrological, agricultural, and climatic purposes. An experiment was conducted in a weighing lysimeter to characterize the diurnal dynamics of evaporation under natural conditions. Sampling revealed a completely dry surface sand layer after 5 days of evaporation. Its thickness was <1 cm early in the morning, increasing to reach 4?5 cm in the evening. This evidence points out fundamental limitations of the approaches that assume hydraulic connectivity from the water table up to the surface, as well as those that suppose monotonic drying when unsteady conditions prevail. The computed vapor phase diffusion rates from the apparent drying front based on Fick's law failed to reproduce the measured cumulative evaporation during the sampling day. We propose that two processes rule natural evaporation resulting from daily fluctuations of climatic variables: (i) evaporation of water, stored during nighttime due to redistribution and vapor condensation, directly into the atmosphere from the soil surface during the early morning hours, that could be simulated using a mass transfer approach and (ii) subsurface evaporation limited by Fickian diffusion, afterward. For the conditions prevailing during the sampling day, the amount of water stored at the vicinity of the soil surface was 0.3 mm and was depleted before 11:00. Combining evaporation from the surface before 11:00 and subsurface evaporation limited by Fickian diffusion after that time, the agreement between the estimated and measured cumulative evaporation was significantly improved.
Resumo:
The European Space Agency Soil Moisture andOcean Salinity (SMOS) mission aims at obtaining global maps ofsoil moisture and sea surface salinity from space for large-scale andclimatic studies. It uses an L-band (1400–1427 MHz) MicrowaveInterferometric Radiometer by Aperture Synthesis to measurebrightness temperature of the earth’s surface at horizontal andvertical polarizations ( h and v). These two parameters will beused together to retrieve the geophysical parameters. The retrievalof salinity is a complex process that requires the knowledge ofother environmental information and an accurate processing ofthe radiometer measurements. Here, we present recent resultsobtained from several studies and field experiments that were partof the SMOS mission, and highlight the issues still to be solved.
Resumo:
Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.
Resumo:
We report on the growth of epitaxial YBa2Cu3O7 thin films on X-cut LiNbO3 single crystals. The use of double CeO2/YSZ buffer layers allows a single in-plane orientation of YBa2Cu3O7, and results in superior superconducting properties. In particular, surface resistance Rs values of 1.4 m¿ have been measured at 8 GHz and 65 K. The attainment of such low values of Rs constitutes a key step toward the incorporation of high Tc materials as electrodes in photonic and acoustic devices.
Resumo:
In this paper we study the effect of microwave absorption on the quantum relaxation rate of Mn12 molecular clusters. We have determined first the resonant frequencies of a microwave resonator containing a single crystal of Mn12-Acetate and measured initial isothermal magnetization curves while microwave power was put into the resonator. We have found that the tunneling rate changes one order of magnitude for certain frequencies. This suggests that the microwave shaking of the nuclear spin and molecular vibrational degrees of freedom is responsible for the huge increasing of the tunneling rate.
Resumo:
Plutonium and americium are radionuclides particularly difficult to measure in environmental samples because they are alpha-emitters and therefore necessitate a careful separation before any measurement, either using radiometric methods or ICP-SMS. Recent developments in extraction chromatography resins such as Eichrom (R) TRU and TEVA have resolved many of the analytical problems but drawbacks such as low recovery and spectral interferences still occasionally occur. Here, we report on the use of the new Eichrom (R) DGA resin in association with TEVA resin and high pressure microwave acid leaching for the sequential determination of plutonium and americium in environmental samples. The method results in average recoveries of 83 +/- 15% for plutonium and 73 +/- 22% for americium (n = 60), and a less than 10% deviation from reference values of four IAEA reference materials and three samples from intercomparisons exercises. The method is also suitable for measuring Pu-239 in water samples at the mu Bq/l level, if ICP-SMS is used for the measurement.
Resumo:
A number of concrete admixtures are presently used in various concretes principally for water reduction, retardation, or air entrainment. Whereas the use of these admixtures in concrete placement is well documented, there is limited information showing their effects on durability and drying shrinkage. Since the durability and the shrinkage of concrete can have a pronounce effect on a structures longevity, wear characteristics, and reaction to loading, it is desirable to know the relative effects of different admixtures prior to concrete placement. The purpose of this study is to provide information which could be used to establish durability and shrinkage criterion for evaluating the admixtures currently in use and those whose use may be proposed.