189 resultados para Microtus oeconomus
Resumo:
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y-chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least-divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi-absence of Y-chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non-neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.
Resumo:
Island evolution may be expected to involve fast initial morphological divergence followed by stasis. We tested this model using the dental phenotype of modern and ancient common voles (Microtus arvalis), introduced onto the Orkney archipelago (Scotland) from continental Europe some 5000 years ago. First, we investigated phenotypic divergence of Orkney and continental European populations and assessed climatic influences. Second, phenotypic differentiation among Orkney populations was tested against geography, time, and neutral genetic patterns. Finally, we examined evolutionary change along a time series for the Orkney Mainland. Molar gigantism and anterior-lobe hypertrophy evolved rapidly in Orkney voles following introduction, without any transitional forms detected. Founder events and adaptation appear to explain this initial rapid evolution. Idiosyncrasy in dental features among different island populations of Orkney voles is also likely the result of local founder events following Neolithic translocation around the archipelago. However, against our initial expectations, a second marked phenotypic shift occurred between the 4th and 12th centuries AD, associated with increased pastoral farming and introduction of competitors (mice and rats) and terrestrial predators (foxes and cats). These results indicate that human agency can generate a more complex pattern of morphological evolution than might be expected in island rodents.
Continental-Scale Footprint of Balancing and Positive Selection in a Small Rodent (Microtus arvalis)
Resumo:
Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average FST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.
Resumo:
Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.
Resumo:
Background The mechanistic basis of speciation and in particular the contribution of behaviour to the completion of the speciation process is often contentious. Contact zones between related taxa provide a situation where selection against hybridization might reinforce separation by behavioural mechanisms, which could ultimately fully isolate the taxa. One of the most abundant European mammals, the common vole Microtus arvalis, forms multiple natural hybrid zones where rapidly diverging evolutionary lineages meet in secondary contact. Very narrow zones of hybridization spanning only a few kilometres and sex-specific gene flow patterns indicate reduced fitness of natural hybrids and incipient speciation between some of the evolutionary lineages. In this study, we examined the contribution of behavioural mechanisms to the speciation process in these rodents by fine-mapping allopatric and parapatric populations in the hybrid zone between the Western and Central lineages and experimental testing of the partner preferences of wild, pure-bred and hybrid female common voles. Results Genetic analysis based on microsatellite markers revealed the presence of multiple parapatric and largely non-admixed populations at distances of about 10 km at the edge of the area of natural hybridization between the Western and Central lineages. Wild females from Western parapatric populations and lab-born F1 hybrids preferred males from the Western lineage whereas wild females of Central parapatric origin showed no measurable preference. Furthermore, wild and lab-born females from allopatric populations of the Western or Central lineages showed no detectable preference for males from either lineage. Conclusions The detected partner preferences are consistent with asymmetrical reinforcement of pre-mating reproductive isolation mechanisms in the European common vole and with earlier results suggesting that hybridization is more detrimental to the Western lineage. As a consequence, these differences in behaviour might contribute to a further geographical stabilization of this moving hybrid zone. Such behavioural processes could also provide a mechanistic perspective for frequently-detected asymmetrical introgression patterns in the largely allopatrically diversifying Microtus genus and other rapidly speciating rodents.
Resumo:
Glucocorticoid levels in animals may respond to and influence the development of social attachments. This hypothesis was tested in prairie voles (Microtus ochrogaster), monogamous rodents that form long-term heterosexual pair bonds. In socially naive female prairie voles, cohabitation with an unfamiliar male resulted in a dramatic decline in serum corticosterone levels. When corticosterone levels were reduced via adrenalectomy, females developed partner preferences after 1 h of cohabitation, while sham-operated and untreated females required 3 h or more of nonsexual cohabitation to establish a partner preference. In adrenalectomized and intact females, exogenous injections of corticosterone, given prior to social exposure, prevented the development of preferences for the cohabitating male. Although corticosterone inhibited the development of partner preferences, it did not interfere with the expression of previously established social preferences. These results suggest that social stimuli can modulate adrenal activity and that adrenal activity, in turn, is capable of influencing the formation of adult social preferences in female prairie voles. The involvement of the adrenal axis in the formation of partner preferences and the subsequent development of pair bonds provides a mechanism through which environmental and social factors may influence social organization in this species.
Resumo:
Acknowledgments RRP was supported by a PhD-studentship from the University of Valladolid (co-funded by Banco Santander, RR 30/04/2014). Financial support was provided by ECOCYCLES (BIODIVERSA 2008, Era-net European project, EUI2008-03658 and NERC NE/G002045/1 to XL) and ECOVOLE projects (CGL2012-35348; Ministerio de Economía y Competitividad of Spain). The article also contributes to project ECOTULA (CGL2015-66962-C2-1-R). We held all the necessary licenses and permits for conducting this work (JJLL, FM and RRP held animal experimentation permits of level B for Spain, and a capture permit was provided by the Consejería de Fomento y Medio Ambiente, Junta de Castilla y León (Expte: EP/CYL/665/2014)). We thank two anonymous reviewers for providing and constructive comments to improve the manuscript.
Resumo:
We have investigated the karyotype relationships of two oriental voles, i.e. the Yulong vole (Eothenomys proditor, 2n = 32) and the large oriental vole (Eothenomys miletus, 2n = 56) as well as the Clarke's vole (Microtus clarkei, 2n = 52), by a combined a
Resumo:
为了研究亲子分开后雄性柴达木根田鼠(Microtus limnophylus)对亲本尿气味的记忆持续时间,分别在未分开(20日龄),以及分开10d(30日龄)、20d(40日龄)、30d(50日龄)、40d(60日龄)时,以新鲜尿作为气味源,在行为观察箱中记录雄性柴达木根田鼠对不同气味源的行为响应模式。结果表明:(1)未分开时,雄鼠对父本气味的接近频次显著高于陌生雄鼠气味;分开10d时,雄鼠对父本气味的访问时间显著多于对陌生雄鼠气味的访问时间;分开20d时,雄鼠对陌生雄鼠气味的接近潜伏期极显著短于父本,对陌生雄鼠气味的访问时间极显著长于父本,其遭遇父鼠气味时的自我修饰频次显著少于陌生雄鼠气味。(2)分开30d后,雄鼠对父本和陌生雄鼠气味的行为响应没有明显差异。以上结果表明,在亲子分开20d时,雄鼠仍能识别父本与陌生雄鼠的气味;在分开30d后,雄鼠不再能够识别父本与陌生雄鼠的气味。(3)在未分窝时,雄性柴达木根田鼠幼仔对母本和陌生雌鼠气味的行为响应没有任何差异。(4)在分开10d时,雄性柴达木根田鼠对母本和陌生雌鼠气味表现出不同的行为响应模式;分开20~40d时,雄鼠对母本与陌生雌鼠气味的行为响应没有任何差异。以上结果表明,在亲子分开10d时,雄鼠仍能识别母本与陌生雌鼠的气味;在分开20d后,雄鼠不再能够识别母本与陌生雌鼠的气味。因此,雄鼠对父本气味的嗅觉记忆时间可以持续到亲子分开20~30d之间;其对母本气味的嗅觉记忆时间可以持续到亲子分开10d时。
Resumo:
根田鼠(Micortus oeconomus)是一种分布广泛的小型哺乳动物,在海北高寒草甸地区,根田鼠是优势小型啮齿动物之一,主要分布于植被较好的草甸和灌丛中,有关其自然以及实验状态下种群数量动态的研究相对较多,但是对该地区冬季恶劣自然条件下,其种群动态的研究尚未见报道。研究冬季根田鼠种群特征的变化有助于对其整个生活史过程的全面理解,也便于了解冬降劣气候条件对其越冬留存率的影响进而又是如何影响翌年的种群数量。
Resumo:
Muscle samples were collected from small herbivorous mammals (Ochotona curzoniae, Microtus oecnomus, Myospalax fontanierii and Lepus oiostolus) at the alpine meadow ecosystem at the Tibetan Plateau in order to address variability in stable carbon isotope composition. Stable carbon isotope values of muscles remain steady and show no significant variations (-25.72 to -27.04 parts per thousand) among the four small mammal species. Based on the mass balance theory of stable isotopes, it is proposed that small herbivorous mammals mainly (or totally) rely on C3 grasses as food supply, and there is few or no distribution of C4 grasses at the ecosystem. The results reflect our previous study on the isotope patterns of plant species. Thus, stable carbon isotope analysis of muscles provides a method to address dietary selection and dietary variability in herbivores. In addition, stable carbon isotopic analyses can be used to address changes in vegetation distributions in ecosystem and paleovegetaion and paleoclimate.
Resumo:
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.
Resumo:
How does fire affect the plant and animal community of the boreal forest? This study attempted to examine the changes in plant composition and productivity, and small mammal demography brought about by fire in the northern boreal environment at Chick Lake, N.W.T. (65053fN, 128°14,W). Two 5*6 ha plots measuring 375m x 150m were selected for study during the summers of 1973 and 197^. One had been unburned for 120 years, the other was part of a fire which burned in the spring of 1969. Grids of 15m x 15m were established in each plot and meter square quadrats taken at each of the 250 grid intersections in order to determine plant composition and density. Aerial primary production was assessed by clipping and drying 80 samples of terminal new production for each species under investigation. Small mammal populations were sampled by placing a Sherman live trap at each grid intersection for ten days in every month. The two plots were similar in plant species composition which suggested that most regrowth in the burned area was from rootstocks which survived the fire. The plant data were submitted to a cluster analysis that revealed nine separate species associations, six of which occured in the burned area and eight of which occured in the control. These were subsequently treated as habitats for purposes of comparison with small mammal distributions. The burned area showed a greater productivity in flowers and fruits although total productivity in the control area was higher due to a large contribution from the non-vascular component. Maximum aerial productivity as dry wieght was measured at 157.1 g/m and 207.8 g/m for the burn and control respectively. Microtus pennsylvanicus and Clethrionomys rutilus were the two most common small mammals encountered; Microtus xanthognathus, Synaptomys borealis, and Phenacomys intermedius also occured in the area. Populations of M. pennsylvanicus and C. rutilus were high during the summer of 1973; however, M. pennsylvanicus was rare on the control but abundant on the burn, while C. rutilus was rare on the burn but abundant in the control. During the summer of 197^ populations declined, with the result that few voles of any species were caught in the burn while equal numbers of the two species were caught in the control. During the summer of 1973 M. pennsylvanicus showed a positive association to the most productive habitat type in the burn which was avoided by C. rutilus. In the control £• rutilus showed a similar positive association to the most productive habitat type which was avoided by M. pennsylvanicus. In all cases for the high population year of 1973# the two species never overlapped in habitat preference. When populations declined in 197^f "both species showed a strong association for the most productive habitat in the control. This would suggest that during a high population year, an abundant species can exclude competitors from a chosen habitat, but that this dominance decreases as population levels decrease. It is possible that M. pennsylvanicus is a more efficient competitor in a recently burned environment, while C. rutilus assumes this role once non-vascular regrowth becomes extensive.
Resumo:
Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.