840 resultados para Microstructural refinement
Resumo:
We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.
Resumo:
A detailed quantitative microstructural study coupled with cathodoluminescence and geochemical analyses on marbles from Naxos demonstrates that the analysis of microstructures is the most sensitive method to define the origin of marbles within, and between, different regions. Microstructure examination can only be used as an accurate provenance tool if a correction for the second-phase content is considered. If second phases are not considered, a large spread of different microstructures occurs within sample sites, making a separation between neighbouring outcrops difficult or impossible. Moreover, this study shows that the origin of a marble is defined more precisely if the microstructural observations are coupled with cathodoluminescence data.
Resumo:
SPOAN is an autosomal recessive neurodegenerative disorder which was recently characterized by our group in a large inbred Brazilian family with 25 affected individuals. This condition is clinically defined by: 1. congenital optic atrophy; 2. progressive spastic paraplegia with onset in infancy; and 3. progressive motor and sensory axonal neuropathy. Overall, we are now aware of 68 SPOAN patients (45 females and 23 males, with age ranging from 5 to 72 years), 44 of which are presented here for the first time. They were all born in the same geographic micro region. Those 68 patients belong to 43 sibships, 40 of which exhibit parental consanguinity. Sixty-one patients were fully clinically evaluated and 64 were included in the genetic investigation. All molecularly studied patients are homozygotes for D11S1889 at 11q13. This enabled us to reduce the critical region for the SPOAN gene from 4.8 to 2.3 Mb, with a maximum two point lod score of 33.2 (with marker D11S987) and of 27.0 (with marker D11S1889). Three genes located in this newly defined critical region were sequenced, but no pathogenic mutation was detected. The gene responsible for SPOAN remains elusive.
Resumo:
Policy hierarchies and automated policy refinement are powerful approaches to simplify administration of security services in complex network environments. A crucial issue for the practical use of these approaches is to ensure the validity of the policy hierarchy, i.e. since the policy sets for the lower levels are automatically derived from the abstract policies (defined by the modeller), we must be sure that the derived policies uphold the high-level ones. This paper builds upon previous work on Model-based Management, particularly on the Diagram of Abstract Subsystems approach, and goes further to propose a formal validation approach for the policy hierarchies yielded by the automated policy refinement process. We establish general validation conditions for a multi-layered policy model, i.e. necessary and sufficient conditions that a policy hierarchy must satisfy so that the lower-level policy sets are valid refinements of the higher-level policies according to the criteria of consistency and completeness. Relying upon the validation conditions and upon axioms about the model representativeness, two theorems are proved to ensure compliance between the resulting system behaviour and the abstract policies that are modelled.
Resumo:
The (micro)structural and electrical properties of undoped and Er(3+)-doped BaTi(0.85)Zr(0.15)O(3) ceramics were studied in this work for both nominal Ba(2+) and Ti(4+) substitution formulations. The ceramics were produced from solid-state reaction and sintered at 1400 degrees C for 3 h. For those materials prepared following the donor-type nominal Ba(1-x)Er(x)(Ti(0.85)Zr(0.15))O(3) composition, especially, Er(3+) however showed a preferential substitution for the (Ti,Zr)(4+) lattice sites. This allowed synthesis of a finally acceptor-like, highly resistive Ba(Ti,Zr,Er)O(3-delta)-like system, with a solubility limit below but close to 3 cat.% Er(3+). The overall phase development is discussed in terms of the amphoteric nature of Er(3+), and appears to mainly or, at least, partially also involve a minimization of stress effects from the ion size mismatch between the dopant and host cations. Further results presented here include a comparative analysis of the behavior of the materials` grain size, electrical properties and nature of the ferroelectric-to-paraelectric phase transition upon variation of the formulation and Er(3+) content. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new occurrence of rankamaite is here described at the Urubu pegmatite, Itinga municipality, Minas Gerais, Brazil. The mineral forms cream-white botryoidal aggregates of acicular to fibrous crystals, intimately associated with simpsonite, thoreaulite, cassiterite, quartz, elbaite, albite, and muscovite. The average of six chemical analyses obtained by electron microprobe is (range in parentheses, wt%): Na(2)O 2.08 (1.95-2.13), K(2)O 2.61 (2.52-2.74), Al(2)O(3) 1.96 (1.89-2.00), Fe(2)O(3) 0.01 (0.00-0.03), TiO(2) 0.02 (0.00-0.06), Ta(2)O(5) 81.04 (79.12-85.18), Nb(2)O(5) 9.49 (8.58-9.86), total 97.21 (95.95-101.50). The chemical formula derived from this analysis is (Na(1.55)K(1.28))(Sigma 2.83)(Ta(8.45)Nb(1.64)Al(0.89)Fe(0.01)(3+)Ti(0.01))(Sigma 11.00)[O(25.02)(OH)(5.98)](Sigma 31.00). Rankamaite is an orthorhombic ""tungsten bronze"" (OTB), crystallizing in the space group Cmmm. Its unit-cell parameters refined from X-ray diffraction powder data are: a = 17.224(3), b = 17.687(3), c = 3.9361(7) angstrom, V = 1199.1(3) angstrom(3), Z = 2. Rietveld refinement of the powder data was undertaken using the structure of LaTa(5)O(14) as a starting model for the rankamaite structure. The structural formula obtained with the Rietveld analyses is: (Na(2.21)K(1.26))Sigma(3.37)(Ta(9.12)NB(1.30) Al(0.59))(Sigma 11.00)[O(26.29)(OH)(4.71)](Sigma 31.00). The tantalum atoms are coordinated by six and seven oxygen atoms in the form of distorted TaO(6) octahedra and TaO(2) pentagonal bipyramids, respectively. Every pentagonal bipyramid shares edges with four octahedra, thus forming Ta(5)O(14) units. The potassium atom is in an 11-fold coordination, whereas one sodium atom is in a 10-fold and the other is in a 12-fold coordination. Raman and infrared spectroscopy were used to investigate the room-temperature spectra of rankamaite.
Resumo:
The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment. In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties. Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.
Resumo:
The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation
Resumo:
Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process
Resumo:
Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion
Resumo:
The macro- and microstructures of the rabbit celiac-mesenteric ganglion complex are described in 20 young animals. We found ten celiac ganglia, twenty-seven cranial mesenteric ganglia and eleven celiac-mesenteric ganglia. The celiac ganglia had a rectangular shape in nine cases (90%) and a circular one in one case (10%). The cranial mesenteric ganglia presented triangular (66.7%), rectangular (11.1%), L-shape (18.5%) and semilunar (3.7%) arrangements. The celiac-mesenteric ganglia were organized in three patterns: a single left celiac-mesenteric ganglion having a caudal portion (72.7%); celiac-mesenteric ganglia without a caudal portion (18.2%) and a single celiac-mesenteric ganglion with two portions: left and right (9.1%).The microstructure was investigated in nine celiac-mesenteric ganglia. The results showed that the celiac-mesenteric ganglion is actually a ganglion complex constituted of an agglomerate of ganglionic units separated by nerve fibers, capillaries and septa of connective tissue. Using the semi-thin section method we described the cellular organization of the celiac-mesenteric ganglion complex. Inside of each ganglionic unit, there were various cell types: principal ganglion neurons (PGN), glial cells (satellite cells) and SIF cells (small intensely fluorescent cells or small granular cells), which are the cytologic basis for each ganglionic unit of the rabbit's celiac-mesenteric ganglion complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)