957 resultados para Microbial Activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compares two sets of measurements of the composition of bulk precipitation and throughfall at a site in southern England with a 20-year gap between them. During this time, SO2 emissions from the UK fell by 82%, NOx emissions by 35% and NH3 emissions by 7%. These reductions were partly reflected in bulk precipitation, with deposition reductions of 56% in SO4,38% in NO3, 32% in NH4, and 73% in H+. In throughfall under Scots pine, the effects were more dramatic, with an 89% reduction in SO4 deposition and a 98% reduction in H+ deposition. The mean pH under these trees increased from 2.85 to 4.30. Nitrate and ammonium deposition in throughfall increased slightly, however. In the earlier period, the Scots pines were unable to neutralise the high flux of acidity associated with sulphur deposition, even though this was not a highly polluted part of the UK, and deciduous trees (oak and birch) were only able to neutralise it in summer when the leaves were present. In the later period, the sulphur flux had reduced to the point where the acidity could be neutralised by all species — the neutralisation mechanism is thus likely to be largely leaching of base cations and buffering substances from the foliage. The high fluxes are partly due to the fact that these are 60–80 year old trees growing in an open forest structure. The increase in NO3 and NH4 in throughfall in spite of decreased deposition seems likely due to a decrease in foliar uptake, perhaps due to the increasing nitrogen saturation of the catchment soils. These changes may increase the rate of soil microbial activity as nitrogen increases and acidity declines, with consequent effects on water quality of the catchment drainage stream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prebiotic lactulose, a probiotic strain of Lactobacillus plantarum (L. plantarum) and a synbiotic combination of these two agents were evaluated as growth promoters in 25–39-day old commercial weaning pigs. Ninety-six weaning pigs were allocated into 32 pens, taking initial weight into account, and distributed into four groups as follows: a control diet (CTR), the same diet supplemented daily with L. plantarum (109 CFU/mL sprayed on top; 20 mL/pig) (LPN); 10 g/kg lactulose (LAC) or a combination of both treatments (SYN). At day 14, eight piglets from each group were euthanized and proximal colon digesta was sampled for luminal pH, short-chain fatty acids (SCFA) and lactic acid concentrations. Deoxyribonucleic acid was extracted from colonic digesta and the microbial community was profiled by terminal restriction fragment length polymorphism analysis (T-RFLP) and qPCR. Blood urea nitrogen (BUN) and acute-phase proteins (Pig-MAP) were measured. Lactulose treatment (LAC) improved feed intake (P<0.05), average daily gain (P<0.01), feed:gain ratio (P<0.05) and reduced BUN (P<0.01). Both, LAC and LPN treatment, decreased the Enterobacteriaceae:Lactobacillus spp. ratio in the colonic luminal contents (P<0.05). Moreover LPN treatment promoted a decrease in the percentage of branched fatty acids (P<0.01) suggesting a reduction in proteolytic microbial activity. Microbial profiling of colonic luminal contents by T-RFLP revealed changes in some microbial species. Terminal restriction fragments (TRFs) compatible with Bifidobacterium thermoacidophilum were more frequently detected in experimental diets compared to CTR (P<0.05). Pigs receiving SYN diet demonstrated the combined positive effects of individual LAC and LPN treatment although we were not able to show a specific increase in the probiotic strain with the inclusion of lactulose. Collectively, these data suggest the combination of lactulose and L. plantarum acts as a complementary synbiotic, but not as a synergistic combination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance to the innate defences of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common coloniser of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent anti-microbial activity. The mechanisms by which S. aureus is able to resist such defences in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates efflux of radiolabelled cholic acid in both S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated survival of S. aureus in an anaerobic three stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taphonomic studies regularly employ animal analogues for human decomposition due to ethical restrictions relating to the use of human tissue. However, the validity of using animal analogues in soil decomposition studies is still questioned. This study compared the decomposition of skeletal muscle tissues (SMTs) from human (Homo sapiens), pork (Sus scrofa), beef (Bos taurus), and lamb (Ovis aries) interred in soil microcosms. Fixed interval samples were collected from the SMT for microbial activity and mass tissue loss determination; samples were also taken from the underlying soil for pH, electrical conductivity, and nutrient (potassium, phosphate, ammonium, and nitrate) analysis. The overall patterns of nutrient fluxes and chemical changes in nonhuman SMT and the underlying soil followed that of human SMT. Ovine tissue was the most similar to human tissue in many of the measured parameters. Although no single analogue was a precise predictor of human decomposition in soil, all models offered close approximations in decomposition dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biocidal treatment of soil is used to remove or inhibit soil microbial activity, and thus provides insight into the relationship between soil biology and soil processes. Chemical (soil pH, phosphodiesterase, protease) and biological (substrate induced respiration) characteristics of three contrasting soils from tropical savanna ecosystems in north Queensland, Australia were measured in field fresh samples and following autoclaving (121 °C/103 kPa for 30 min on two consecutive days). Autoclaving treatment killed the active soil microbial biomass and significantly decreased protease activity (∼90%) in all three soils. Phosphodiesterase activity in kaolinitic soils also significantly decreased by 78% and 92%. However, autoclave treatment of smectitic soil only decreased phosphodiesterase activity by 4% only. This study demonstrates phosphodiesterase can remain stable in extreme conditions. This might be a characteristic vital to the cycling of phosphorus in shrink–swell clays in Australian tropical savanna ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Horticulture may be defined as the intensive cultivation and harvesting of plants for financial, environmental and social profit. Evidence for the occurrence of climate change more generally and reasons why this process is happening with such rapidity are discussed. These changes are then considered in terms of the effects which might alter the options for worldwide intensive horticultural cultivation of plants and its interactions with other organisms. Potentially changing climates will have considerable impact upon horticultural processes and productivity across the globe . Climate change will alter the growth patterns and capabilities for flowering and fruiting of many perennial and annual horticultural plants. In some regions perennial fruit crops are likely to experience substantial difficulties because of altered seasonal conditions affecting dormancy, acclimation and subsequent flowering and fruiting. Elsewhere these crops may benefit from the effects of climate change as a result of reduced cold damage and increased length of the growing season. There will be considerable effects for aerial and edaphic microbes invertebrate and vertebrate animals which have benign and pathogenic interactions with horticultural plants. Microbial activity and as a consequence soil fertility may alter. New pests and pathogens may become prevalent and damaging in areas where the climate previously excluded their activity. Vital resources such as water and nutrients may become scarce in some regions reducing opportunities for growing horticultural crops. Wind and windiness are significant factors governing the success of horticultural plants and the scale of their impacts may change as climate alters. Damaging winds could limit crop growing in areas where previously it flourished. Forms of macro- and micro-landscaping will change as the spectrum of plants which can be cultivated alters and the availability of resources and their cost changes driven by scarcities brought about by climate change. The horticultural economy of India as it may be affected by climate change is described as an individual example in a detailed study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fire is common in savannas but its effects on soil are poorly understood. We analyzed long-term effects of fire on surface soil of an open Brazilian savanna (campo sujo) in plots submitted to different fire regimes during 18 years. The five fire regimes were: unburned, quadrennial fires in middle dry season, and biennial fires in early, middle or late dry season. Soil was collected during the wet and the middle dry season of 2008, and analyzed for pH, organic matter, total N, potential acidity, exchangeable cations and available P, S, Mn, Cu, Zn and Fe. We applied multivariate analysis to search for patterns related to fire regimes, and to local climate, fuel, and fire behavior. Spearman test was used to establish correlations between soil variables and the multivariate analysis gradient structure. Seasonal differences were tested using t-test. We found evidence of long-term fire effects: the unburned plot was segregated mainly by lower soil pH; the quadrennial plot was also segregated by lower soil pH and higher amount of exchangeable cations; the time of burning during the dry season in biennial plots did not significantly affect soil availability of nutrients. Differences in elements amounts due to the season of soil sampling (wet or dry) were higher than due to the effect of fires. Higher availability of nutrients in the soil during the wet season was probably related to higher nutrient inputs via rainfall and higher microbial activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os efeitos da lotação de animais na produção de ovinos têm sido bastante estudados. No entanto, informações sobre seus efeitos na biomassa e nas atividades microbianas e, em conseqüência, na fertilidade do solo de pastagens são escassas. Neste trabalho, os efeitos da lotação de ovinos (LO) na biomassa e nas atividades microbianas responsáveis pela transformação dos compostos do C e N em solo de clima subtropical foram avaliados. As amostras de solo foram coletadas nas camadas de 0-10 e 10-20 cm de pastos com baixa LO (5 animais ha-1), alta LO (40-50 animais ha-1) e com ausência de animais, em um delineamento inteiramente casualizado em parcelas subdivididas, com seis repetições. Os maiores valores de biomassa microbiana e das atividades respiratória, nitrificante e enzimática (urease e protease) foram encontrados nos solos dos pastos com baixa LO. Estes pastos também acumularam as maiores quantidades de matéria orgânica e N total. Essas variáveis foram reduzidas nos pastos sem animais ou com alta LO. Vegetação descontínua e intensa mineralização podem ter acarretado a diminuição dessas variáveis nos pastos com alta LO. Alta correlação foi obtida entre matéria orgânica, C orgânico e N total com as quantidades de biomassa microbiana e a atividade enzimática. A camada de 0-10 cm apresentou valores maiores das variáveis estudadas do que os encontrados na camada de 10-20 cm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sistemas autossustentáveis favorecem as populações microbianas devido à conservação e ao aumento da matéria orgânica no solo. Além disso, as plantas que fazem parte desses sistemas promovem o efeito rizosférico, por meio da zona de influência das raízes, que resulta no aumento da atividade e na modificação da população microbiana. O objetivo deste trabalho foi avaliar o efeito da rotação de culturas de inverno sobre sequências de verão, em sistema de semeadura direta, nos atributos bioquímicos (amilase, urease, celulase e protease) e químicos (carbono orgânico total - COT, carboidratos totais e proteínas totais) em solo rizosférico (SR) e não rizosférico (SNR). Este estudo foi constituído de três culturas de inverno: milho (Zea mays L.), girassol (Helianthus anuus L.) e guandu (Cajanus cajan (L.) Millsp), que estavam em rotação sobre três sequências de verão: soja/soja (Glycine max L.), milho/milho e soja/milho, e duas posições no solo: solo aderido às raízes das plantas (SR) e solo da entrelinha de plantio (SNR). As atividades da amilase, celulase, protease e urease no SR foram 16, 85, 62 e 100 % maiores do que no SNR; para COT e proteínas totais a diferença foi de 21 %. Das culturas de inverno, o milho foi a que mais estimulou as atividades das enzimas amilase, celulase, urease e protease no SR, bem como a atividade das enzimas amilase, urease e protease no SNR. de modo geral, os teores de proteínas totais não foram influenciados pelas culturas de inverno e pelas sequências de verão; os carboidratos totais foram influenciados pelas culturas de inverno milho e girassol. Para o COT houve influência apenas da sequência de verão milho/milho. Os atributos bioquímicos e químicos avaliados neste estudo podem ser utilizados como indicadores das alterações no solo promovidas pelas culturas de inverno e pelas sequências de verão.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho foi conduzido com o objetivo de determinar o efeito de suplementos concentrados com diferentes degradabilidades da proteína (alta-70%, média-50% e baixa-30%) e o efeito da quantidade dos mesmos (0,5, 1,0 e 1,5 kg de MS/dia) sobre os parâmetros ruminais (pH e N-NH3) e o desaparecimento da MS, PB e FDN da forragem em bovinos pastejando Brachiaria brizantha cv. Marandu no período da seca. Foram utilizados 10 novilhos canulados no rúmen com peso médio de 354 kg em um esquema fatorial com três repetições (blocos). Não houve influência da degradabilidade protéica e/ou quantidade de suplemento sobre os valores de pH ruminal, que variaram de 6,38 a 6,91. As concentrações de N-NH3 ruminal foram crescentes com o aumento da degradabilidade do suplemento e quantidade de suplementação, sendo maiores uma hora após o fornecimento do suplemento e decrescendo até cinco horas. O tratamento-controle apresentou concentrações de N-NH3 consideradas adequadas para boa atividade microbiana. Não houve efeito da degradabilidade protéica do suplemento ou quantidade na degradação ruminal da MS, PB e da FDN da forragem, não diferindo do tratamento-controle. Quanto aos parâmetros de degradação ruminal da forrageira, os valores médios foram de 29% para a fração solúvel da PB e de de 47% para a insolúvel potencialmente degradável, com taxa de degradação de 4,88%. Para FDN, a fração potencialmente degradável foi de 56% e a taxa de degradação, de 4,33%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com o objetivo de avaliar a influência do amido dietético sobre o rendimento produtivo e a atividade microbiana cecal de coelhos em crescimento, quatro dietas experimentais foram elaboradas de forma a conter níveis crescentes de amido (23, 28, 33 e 38% de amido total na base da MS), os quais foram fornecidos a 32 coelhos da raça Nova Zelândia Branco, distribuídos em gaiolas de engorda individuais, seguindo um delineamento em blocos casualizados. Houve efeito linear decrescente para consumo e conversão alimentar, em que valores de 108,67 g/d e 3,216, respectivamente, foram obtidos para os animais alimentados com 38% de amido dietético. No entanto, o ganho de peso e o rendimento de carcaça não foram influenciados pelos tratamentos. Por outro lado, os valores de pH, as concentrações totais e as proporções molares dos ácidos graxos voláteis não foram influenciados pelos tratamentos, porém, para o ácido propiônico, houve efeito linear decrescente, sendo a maior proporção molar (12,06%) verificada no conteúdo cecal de coelhos alimentados com 23% de amido dietético. O milho-grão apresentou maior influência sobre a atividade microbiana cecal que o amido de milho purificado, porém, sem alterar o desempenho e rendimento de carcaça.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo principal desta revisão foi reunir informações a respeito da ação de compostos orgânicos produzidos por plantas na disponibilidade de nutrientes nos solos, principalmente sobre os cátions Ca, Mg e K e sobre o ânion fosfato. O sistema de cultivo adotado ocasiona mudanças nas propriedades químicas e físicas do solo, especialmente na disponibilidade de nutrientes e condicionamento físico do solo. Tem-se observado o acúmulo de nutrientes nas camadas superficiais do solo no sistema de semeadura direta, pelo não-revolvimento do solo e pela deposição de resíduos de culturas na superfície. Os ácidos orgânicos provenientes de plantas podem interagir com a fase sólida e ocupar os sítios de adsorção de nutrientes, competindo diretamente com eles e aumentando sua disponibilidade no solo. A adição de resíduos vegetais pode promover, antes da humificação, a elevação do pH, por promover complexação de H e Al com compostos do resíduo vegetal, deixando Ca, Mg e K mais livres em solução, o que pode ocasionar aumento na saturação da CTC por estes cátions de reação básica. Também é normal observar o aumento na disponibilidade de P no solo com a adição de resíduos vegetais, tanto pelo P presente no resíduo como por competição de compostos orgânicos dos resíduos pelos sítios de troca no solo. A persistência dos compostos orgânicos também é fator que tem grande interferência nos processos de sorção/dessorção de cátions e ânions, dependendo da atividade microbiana, da disponibilidade metabólica do substrato carbonado e da sorção aos colóides do solo.