682 resultados para Mhc
Resumo:
A functional immune system requires a tight control over major histocompatibility complex (MHC) gene transcription, as the abnormal MHC expression patterns of severe immunodeficiency and autoimmune diseases demonstrate. Although the regulation of MHC expression has been well documented in humans and mice, little is known in other species. In this study, we detail the level of polymorphism in wolf and dog MHC gene promoters. The promoter regions of the DRB, DQA and DQB locus were sequenced in 90 wolves and 90 dogs. The level of polymorphism was high in the DQB promoters, with variation found within functionally relevant regions, including binding sites for transcription factors. Clear associations between DQB promoters and exon 2 alleles were noted in wolves, indicating strong linkage disequilibrium in this region. Low levels of polymorphism were found within the DRB and DQA promoter regions. However, a variable site was identified within the T box, a TNF-alpha response element, of the DQA promoter. Furthermore, we identified a previously unrecognised 18-base-pair deletion within exon 1 of the DQB locus.
Resumo:
The underlying generic properties of {alpha}β TCRs that control MHC restriction remain largely unresolved. To investigate MHC restriction, we have examined the CTL response to a viral epitope that binds promiscuously to two human leukocyte Ags (HLAs) that differ by a single amino acid at position 156. Individuals expressing either HLA-B*3501 (156Leucine) or HLA-B*3508 (156Arginine) showed a potent CTL response to the 407HPVGEADYFEY417 epitope from EBV. Interestingly, the response was characterized by highly restricted TCR β-chain usage in both HLA-B*3501+ and HLA-B*3508+ individuals; however, this conserved TRBV9+ β-chain was associated with distinct TCR {alpha}-chains depending upon the HLA-B*35 allele expressed by the virus-exposed host. Functional assays confirmed that TCR {alpha}-chain usage determined the HLA restriction of the CTLs. Structural studies revealed significant differences in the mobility of the peptide when bound to HLA-B*3501 or HLA-B*3508. In HLA-B*3501, the bulged section of the peptide was disordered, whereas in HLA-B*3508 the bulged epitope adopted an ordered conformation. Collectively, these data demonstrate not only that mobile MHC-bound peptides can be highly immunogenic but can also stimulate an extremely biased TCR repertoire. In addition, TCR {alpha}-chain usage is shown to play a critical role in controlling MHC restriction between closely related allomorphs.
Resumo:
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.
Resumo:
Vaccines are the greatest single instrument of prophylaxis against infectious diseases, with immeasurable benefits to human wellbeing. The accurate and reliable prediction of peptide-MHC binding is fundamental to the robust identification of T-cell epitopes and thus the successful design of peptide- and protein-based vaccines. The prediction of MHC class II peptide binding has hitherto proved recalcitrant and refractory. Here we illustrate the utility of existing computational tools for in silico prediction of peptides binding to class II MHCs. Most of the methods, tested in the present study, detect more than the half of the true binders in the top 5% of all possible nonamers generated from one protein. This number increases in the top 10% and 15% and then does not change significantly. For the top 15% the identified binders approach 86%. In terms of lab work this means 85% less expenditure on materials, labour and time. We show that while existing caveats are well founded, nonetheless use of computational models of class II binding can still offer viable help to the work of the immunologist and vaccinologist.
Resumo:
MHC class II proteins bind oligopeptide fragments derived from proteolysis of pathogen antigens, presenting them at the cell surface for recognition by CD4+ T cells. Human MHC class II alleles are grouped into three loci: HLA-DP, HLA-DQ and HLA-DR. In contrast to HLA-DR and HLA-DQ, HLA-DP proteins have not been studied extensively, as they have been viewed as less important in immune responses than DRs and DQs. However, it is now known that HLA-DP alleles are associated with many autoimmune diseases. Quite recently, the X-ray structure of the HLA-DP2 molecule (DPA*0103, DPB1*0201) in complex with a self-peptide derived from the HLA-DR a-chain has been determined. In the present study, we applied a validated molecular docking protocol to a library of 247 modelled peptide-DP2 complexes, seeking to assess the contribution made by each of the 20 naturally occurred amino acids at each of the nine binding core peptide positions and the four flanking residues (two on both sides).
Resumo:
Class II Major Histocompatibility Complex (MHC) molecules have an open-ended binding groove which can accommodate peptides of varying lengths. Several studies have demonstrated that peptide flanking residues (PFRs) which lie outside the core binding groove can influence peptide binding and T cell recognition. By using data from the AntiJen database we were able to characterise systematically the influence of PFRs on peptide affinity for MHC class II molecules.
Resumo:
Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.
Resumo:
Motivation: T-cell epitope identification is a critical immunoinformatic problem within vaccine design. To be an epitope, a peptide must bind an MHC protein. Results: Here, we present EpiTOP, the first server predicting MHC class II binding based on proteochemometrics, a QSAR approach for ligands binding to several related proteins. EpiTOP uses a quantitative matrix to predict binding to 12 HLA-DRB1 alleles. It identifies 89% of known epitopes within the top 20% of predicted binders, reducing laboratory labour, materials and time by 80%. EpiTOP is easy to use, gives comprehensive quantitative predictions and will be expanded and updated with new quantitative matrices over time.
Resumo:
Epitopes mediated by T cells lie at the heart of the adaptive immune response and form the essential nucleus of anti-tumour peptide or epitope-based vaccines. Antigenic T cell epitopes are mediated by major histocompatibility complex (MHC) molecules, which present them to T cell receptors. Calculating the affinity between a given MHC molecule and an antigenic peptide using experimental approaches is both difficult and time consuming, thus various computational methods have been developed for this purpose. A server has been developed to allow a structural approach to the problem by generating specific MHC:peptide complex structures and providing configuration files to run molecular modelling simulations upon them. A system has been produced which allows the automated construction of MHC:peptide structure files and the corresponding configuration files required to execute a molecular dynamics simulation using NAMD. The system has been made available through a web-based front end and stand-alone scripts. Previous attempts at structural prediction of MHC:peptide affinity have been limited due to the paucity of structures and the computational expense in running large scale molecular dynamics simulations. The MHCsim server (http://igrid-ext.cryst.bbk.ac.uk/MHCsim) allows the user to rapidly generate any desired MHC:peptide complex and will facilitate molecular modelling simulation of MHC complexes on an unprecedented scale.
Resumo:
The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort. Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and have established such models for more than 40 class I and class II MHC molecules. Here we present the SVRMHC web server for predicting peptide-MHC binding affinities using these models. Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC models available allowed for an updated evaluation of the performance of the SVRMHC method compared to other well- known linear modeling methods. SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for T cell epitope researchers.
Resumo:
The binding between peptide epitopes and major histocompatibility complex (MHC) proteins is a major event in the cellular immune response. Accurate prediction of the binding between short peptides and class I or class II MHC molecules is an important task in immunoinformatics. SVRMHC which is a novel method to model peptide-MHC binding affinities based on support rector machine regression (SVR) is described in this chapter. SVRMHC is among a small handful of quantitative modeling methods that make predictions about precise binding affinities between a peptide and an MHC molecule. As a kernel-based learning method, SVRMHC has rendered models with demonstrated appealing performance in the practice of modeling peptide-MHC binding.
Resumo:
Background - Modelling the interaction between potentially antigenic peptides and Major Histocompatibility Complex (MHC) molecules is a key step in identifying potential T-cell epitopes. For Class II MHC alleles, the binding groove is open at both ends, causing ambiguity in the positional alignment between the groove and peptide, as well as creating uncertainty as to what parts of the peptide interact with the MHC. Moreover, the antigenic peptides have variable lengths, making naive modelling methods difficult to apply. This paper introduces a kernel method that can handle variable length peptides effectively by quantifying similarities between peptide sequences and integrating these into the kernel. Results - The kernel approach presented here shows increased prediction accuracy with a significantly higher number of true positives and negatives on multiple MHC class II alleles, when testing data sets from MHCPEP [1], MCHBN [2], and MHCBench [3]. Evaluation by cross validation, when segregating binders and non-binders, produced an average of 0.824 AROC for the MHCBench data sets (up from 0.756), and an average of 0.96 AROC for multiple alleles of the MHCPEP database. Conclusion - The method improves performance over existing state-of-the-art methods of MHC class II peptide binding predictions by using a custom, knowledge-based representation of peptides. Similarity scores, in contrast to a fixed-length, pocket-specific representation of amino acids, provide a flexible and powerful way of modelling MHC binding, and can easily be applied to other dynamic sequence problems.
Resumo:
Background - MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results - A large dataset comprising MHC-peptide structural complexes was created by re-modelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion - The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.