885 resultados para Methods for Multi-criteria Evaluation
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Performance evaluation increasingly assumes a more important role in any organizational environment. In the transport area, the drivers are the company’s image and for this reason it is important to develop and increase their performance and commitment to the company goals. This evaluation can be used to motivate driver to improve their performance and to discover training needs. This work aims to create a performance appraisal evaluation model of the drivers based on the multi-criteria decision aid methodology. The MMASSI (Multicriteria Methodology to Support Selection of Information Systems) methodology was adapted by using a template supporting the evaluation according to the freight transportation company in study. The evaluation process involved all drivers (collaborators being evaluated), their supervisors and the company management. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used.
Resumo:
Multi-criteria decision analysis(MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
Multi-criteria decision analysis (MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
No ambiente altamente competitivo de hoje, um processo eficaz de seleção de fornecedores é muito importante para o sucesso de qualquer organização [33]. Esta dissertação procura determinar quais os critérios e métodos mais utilizados no problema da seleção de fornecedores, contribuindo assim para o apoio a entidades que pretendam iniciar uma seleção de fornecedores de uma forma mais eficaz. Para atingir os objetivos propostos, foi realizada uma análise de artigos que fazem a revisão literária dos métodos e critérios desde o ano de 1985 até ao ano 2012. Com os dados obtidos destas revisões, foi possÃvel identificar quais os três principais métodos utilizados ao longo dos anos, sendo eles o DEA, AHP e Fuzzy set theory e os principais critérios utilizados na seleção de fornecedores. Nesta dissertação, é apresentada uma visão geral da tomada de decisão e os métodos utilizados na tomada de decisão multicritério. É abordado o problema da seleção de fornecedores, o seu processo de seleção e as revisões literárias dos métodos e critérios de seleção utilizados nos últimos anos. Por fim, é apresentada a contribuição para a seleção de fornecedores do estudo realizado durante o desenvolvimento desta dissertação, sendo apresentados e explicados os principais métodos de seleção de fornecedores, bem como os critérios utilizados.
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology Assessment
Resumo:
Geographic information systems give us the possibility to analyze, produce, and edit geographic information. Furthermore, these systems fall short on the analysis and support of complex spatial problems. Therefore, when a spatial problem, like land use management, requires a multi-criteria perspective, multi-criteria decision analysis is placed into spatial decision support systems. The analytic hierarchy process is one of many multi-criteria decision analysis methods that can be used to support these complex problems. Using its capabilities we try to develop a spatial decision support system, to help land use management. Land use management can undertake a broad spectrum of spatial decision problems. The developed decision support system had to accept as input, various formats and types of data, raster or vector format, and the vector could be polygon line or point type. The support system was designed to perform its analysis for the Zambezi river Valley in Mozambique, the study area. The possible solutions for the emerging problems had to cover the entire region. This required the system to process large sets of data, and constantly adjust to new problems’ needs. The developed decision support system, is able to process thousands of alternatives using the analytical hierarchy process, and produce an output suitability map for the problems faced.
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
BACKGROUND: Magnetic resonance imaging (MRI) of pacemakers is a relative contraindication because of the risks to the patient from potentially hazardous interactions between the MRI and the pacemaker system. Chest scans (ie, cardiac magnetic resonance scans) are of particular importance and higher risk. The previously Food and Drug Administration-approved magnetic resonance conditional system includes positioning restrictions, limiting the powerful utility of MRI. OBJECTIVE: To confirm the safety and effectiveness of a pacemaker system designed for safe whole body MRI without MRI scan positioning restrictions. METHODS: Primary eligibility criteria included standard dual-chamber pacing indications. Patients (n = 263) were randomized in a 2:1 ratio to undergo 16 chest and head scans at 1.5 T between 9 and 12 weeks postimplant (n = 177) or to not undergo MRI (n = 86) post-implant. Evaluation of the pacemaker system occurred immediately before, during (monitoring), and after MRI, 1-week post-MRI, and 1-month post-MRI, and similarly for controls. Primary end points measured the MRI-related complication-free rate for safety and compared pacing capture threshold between MRI and control subjects for effectiveness. RESULTS: There were no MRI-related complications during or after MRI in subjects undergoing MRI (n = 148). Differences in pacing capture threshold values from pre-MRI to 1-month post-MRI were minimal and similar between the MRI and control groups. CONCLUSIONS: This randomized trial demonstrates that the Advisa MRI pulse generator and CapSureFix MRI 5086MRI lead system is safe and effective in the 1.5 T MRI environment without positioning restrictions for MRI scans or limitations of body parts scanned.
Resumo:
Nowadays, the joint exploitation of images acquired daily by remote sensing instruments and of images available from archives allows a detailed monitoring of the transitions occurring at the surface of the Earth. These modifications of the land cover generate spectral discrepancies that can be detected via the analysis of remote sensing images. Independently from the origin of the images and of type of surface change, a correct processing of such data implies the adoption of flexible, robust and possibly nonlinear method, to correctly account for the complex statistical relationships characterizing the pixels of the images. This Thesis deals with the development and the application of advanced statistical methods for multi-temporal optical remote sensing image processing tasks. Three different families of machine learning models have been explored and fundamental solutions for change detection problems are provided. In the first part, change detection with user supervision has been considered. In a first application, a nonlinear classifier has been applied with the intent of precisely delineating flooded regions from a pair of images. In a second case study, the spatial context of each pixel has been injected into another nonlinear classifier to obtain a precise mapping of new urban structures. In both cases, the user provides the classifier with examples of what he believes has changed or not. In the second part, a completely automatic and unsupervised method for precise binary detection of changes has been proposed. The technique allows a very accurate mapping without any user intervention, resulting particularly useful when readiness and reaction times of the system are a crucial constraint. In the third, the problem of statistical distributions shifting between acquisitions is studied. Two approaches to transform the couple of bi-temporal images and reduce their differences unrelated to changes in land cover are studied. The methods align the distributions of the images, so that the pixel-wise comparison could be carried out with higher accuracy. Furthermore, the second method can deal with images from different sensors, no matter the dimensionality of the data nor the spectral information content. This opens the doors to possible solutions for a crucial problem in the field: detecting changes when the images have been acquired by two different sensors.
Resumo:
This contribution introduces Data Envelopment Analysis (DEA), a performance measurement technique. DEA helps decision makers for the following reasons: (1) By calculating an efficiency score, it indicates if a firm is efficient or has capacity for improvement; (2) By setting target values for input and output, it calculates how much input must be decreased or output increased in order to become efficient; (3) By identifying the nature of returns to scale, it indicates if a firm has to decrease or increase its scale (or size) in order to minimise the average total cost; (4) By identifying a set of benchmarks, it specifies which other firms' processes need to be analysed in order to improve its own practices. This contribution presents the essentials about DEA, alongside a case study to intuitively understand its application. It also introduces Win4DEAP, a software package that conducts efficiency analysis based on DEA methodology. The methodical background of DEA is presented for more demanding readers. Finally, four advanced topics of DEA are treated: adjustment to the environment, preferences, sensitivity analysis and time series data.