983 resultados para Methods: numerical
Resumo:
This thesis aims to introduce some fundamental concepts underlying option valuation theory including implementation of computational tools. In many cases analytical solution for option pricing does not exist, thus the following numerical methods are used: binomial trees, Monte Carlo simulations and finite difference methods. First, an algorithm based on Hull and Wilmott is written for every method. Then these algorithms are improved in different ways. For the binomial tree both speed and memory usage is significantly improved by using only one vector instead of a whole price storing matrix. Computational time in Monte Carlo simulations is reduced by implementing a parallel algorithm (in C) which is capable of improving speed by a factor which equals the number of processors used. Furthermore, MatLab code for Monte Carlo was made faster by vectorizing simulation process. Finally, obtained option values are compared to those obtained with popular finite difference methods, and it is discussed which of the algorithms is more appropriate for which purpose.
Resumo:
The design of shell and spatial structures represents an important challenge even with the use of the modern computer technology.If we concentrate in the concrete shell structures many problems must be faced,such as the conceptual and structural disposition, optimal shape design, analysis, construction methods, details etc. and all these problems are interconnected among them. As an example the shape optimization requires the use of several disciplines like structural analysis, sensitivity analysis, optimization strategies and geometrical design concepts. Similar comments can be applied to other space structures such as steel trusses with single or double shape and tension structures. In relation to the analysis the Finite Element Method appears to be the most extended and versatile technique used in the practice. In the application of this method several issues arise. First the derivation of the pertinent shell theory or alternatively the degenerated 3-D solid approach should be chosen. According to the previous election the suitable FE model has to be adopted i.e. the displacement,stress or mixed formulated element. The good behavior of the shell structures under dead loads that are carried out towards the supports by mainly compressive stresses is impaired by the high imperfection sensitivity usually exhibited by these structures. This last effect is important particularly if large deformation and material nonlinearities of the shell may interact unfavorably, as can be the case for thin reinforced shells. In this respect the study of the stability of the shell represents a compulsory step in the analysis. Therefore there are currently very active fields of research such as the different descriptions of consistent nonlinear shell models given by Simo, Fox and Rifai, Mantzenmiller and Buchter and Ramm among others, the consistent formulation of efficient tangent stiffness as the one presented by Ortiz and Schweizerhof and Wringgers, with application to concrete shells exhibiting creep behavior given by Scordelis and coworkers; and finally the development of numerical techniques needed to trace the nonlinear response of the structure. The objective of this paper is concentrated in the last research aspect i.e. in the presentation of a state-of-the-art on the existing solution techniques for nonlinear analysis of structures. In this presentation the following excellent reviews on this subject will be mainly used.
Resumo:
Includes bibliographies.
Resumo:
Bibliography: p. 79-80.
Resumo:
On cover: COO-1469-0106.
Resumo:
Vita.
Resumo:
"Under contracts US AEC AT(11-1)2383 and US AEC AT(11-1)1469."
Resumo:
Thesis - University of Illinois at Urbana-Champaign.
Resumo:
Thesis (M.S.)--University of Illinois, 1970.
Resumo:
"Contract N7 onr-358, T. O. I., NR-041-032."
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.