998 resultados para Methane formation
Resumo:
A methane surplus relative to the atmospheric equilibrium is a frequently observed feature of ocean surface water. Despite the common fact that biological processes are responsible for its origin, the formation of methane in aerobic surface water is still poorly understood. We report on methane production in the central Arctic Ocean, which was exclusively detected in Pacific derived water but not nearby in Atlantic derived water. The two water masses are distinguished by their different nitrate to phosphate ratios. We show that methane production occurs if nitrate is depleted but phosphate is available as a P source. Apparently the low N:P ratio enhances the ability of bacteria to compete for phosphate while the phytoplankton metabolite dimethylsulfoniopropionate (DMSP) is utilized as a C source. This was verified by experimentally induced methane production in DMSP spiked Arctic sea water. Accordingly we propose that methylated compounds may serve as precursors for methane and thermodynamic calculations show that methylotrophic methanogenesis can provide energy in aerobic environments.
Resumo:
Contrary to previous theoretical studies at the UHF/6-31G* level, the methonium radical dication CH52+ is not a Cs symmetrical structure with a 2e—3c bond but a C2v symmetrical structure 1 with two 2e—3c bonds (at the UHF/6-31G**, UMP2/6-31G**, and UQCISD(T)/6-311G** levels). The Cs symmetrical structure is not even a minimum at the higher level of calculations. The four hydrogen atoms in 1 are bonded to the carbon atom by two 2e—3c bonds and the fifth hydrogen atom by a 2e—2c bond. The unpaired electron of 1 is located in a formal p-orbital (of the sp2-hybridized carbon atom) perpendicular to the plane of the molecule. Hydrogen scrambling in 1 is however extremely facile, as is in other C1 cations. It is found that the protonation of methane to CH5+ decreases the energy for subsequent homolytic cleavage resulting in the exothermic (24.1 kcal/mol) formation of CH4+•. Subsequent reaction with neutral methane while reforming CH5+ gives the methyl radical enabling reaction with excess methane to ethane and H2. The overall reaction is endothermic by 11.4 kcal/mol, but offers under conditions of oxidative removal of H2 an alternative to the more energetic carbocationic conversion of methane.
Resumo:
The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.
Resumo:
Natural gas hydrates are clathrates in which water molecules form a crystalline framework that includes and is stabilized by natural gas (mainly methane) at appropriate conditions of high pressures and low temperatures. The conditions for the formation of gas hydrates are met within continental margin sediments below water depths greater than about 500 m where the supply of methane is sufficient to stabilize the gas hydrate. Observations on DSDP Leg 11 suggested the presence of gas hydrates in sediments of the Blake Outer Ridge. Leg 76 coring and sampling confirms that, indeed, gas hydrates are present there. Geochemical evidence for gas hydrates in sediment of the Blake Outer Ridge includes (1) high concentrations of methane, (2) a sediment sample with thin, matlike layers of white crystals that released a volume of gas twenty times greater than its volume of pore fluid, (3) a molecular distribution of hydrocarbon gases that excluded hydrocarbons larger than isobutane, (4) results from pressure core barrel experiments, and (5) pore-fluid chemistry. The molecular composition of the hydrocarbons in these gas hydrates and the isotopic composition of the methane indicate that the gas is derived mainly from microbiological processes operating on the organic matter within the sediment. Although gas hydrates apparently are widespread on the Blake Outer Ridge, they probably are not of great economic significance as a potential, unconventional, energy resource or as an impermeable cap for trapping upwardly migrating gas at Site 533.
Resumo:
Secondary carbonate minerals were recovered within the basalts at both ODP Sites 768 and 770 in the Sulu and Celebes seas. Petrographic and X-ray diffraction analyses indicate that the carbonates are calcites. Other alteration products recognized in the thin sections are smectites, iron oxides, and gypsum. The 13C values of carbonates from both sites range from 1.6 per mil to 2.3 per mil, which are indicative of inorganic carbonate formation with no contributions from 13C-depleted sources such as oxidized organic carbon or methane. The oxygen isotopes at Site 770 range from 30.8 per mil to 31.6 per mil, which indicates a pervasive circulation of cold seawater (9° to 12°C) during alteration of the Celebes Sea basalts. In contrast, carbonates associated with Site 768 basalts have less positive d18O values (21.0 per mil to 27.3 per mil). A lighter 18O isotopic signature indicates the formation of secondary calcite at either higher temperatures or in a system closed to seawater. The rapidly deposited pyroclastic flows at Site 768 would have limited water access to the crust very soon after its formation, which leads us to speculate that the carbonates in the Sulu Sea basalts were formed by isotopically modified fluids resulting from basalt alteration in a closed system.
Resumo:
In this work, we investigate the impact of minute amounts of pure nitrogen addition into conventional methane/hydrogen mixtures on the growth characteristics of nanocrystalline diamond (NCD) films by microwave plasma assisted chemical vapour deposition (MPCVD), under high power conditions. The NCD films were produced from a gas mixture of 4% CH4/H2 with two different concentrations of N2 additive and microwave power ranging from 3.0 kW to 4.0 kW, while keeping all the other operating parameters constant. The morphology, grain size, microstructure and texture of the resulting NCD films were characterized by using scanning electron microscope (SEM), micro-Raman spectroscopy and X-ray diffraction (XRD) techniques. N2 addition was found to be the main parameter responsible for the formation and for the key change in the growth characteristics of NCD films under the employed conditions. Growth rates ranging from 5.4 μm/h up to 9.6 μm/h were achieved for the NCD films, much higher than those usually reported in the literature. The enhancing factor of nitrogen addition on NCD growth rate was obtained by comparing with the growth rate of large-grained microcrystalline diamond films grown without nitrogen and discussed by comparing with that of single crystal diamond through theoretical work in the literature. This achievement on NCD growth rate makes the technology interesting for industrial applications where fast coating of large substrates is highly desirable.