997 resultados para Met


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of beta-catenin is a hallmark of hepatoblastoma (HB) and appears to play a crucial role in its pathogenesis. While aberrant accumulation of the beta-catenin is a common event in HB, mutations or deletions in CTNNB1 (beta-catenin gene) do not always account for the high frequency of protein expression. In this study we have investigated alternative activation of beta-catenin by HGF/c-Met signaling in a large cohort of 98 HB patients enrolled in the SIOPEL-3 clinical trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Identification of specific gene expression signatures characteristic of oncogenic pathways is an important step toward molecular classification of human malignancies. Aberrant activation of the Met signaling pathway is frequently associated with tumour progression and metastasis. In this study, we defined the Met-dependent gene expression signature using global gene expression profiling of WT and Met-deficient primary mouse hepatocytes. Newly identified transcriptional targets of the Met pathway included genes involved in the regulation of oxidative stress responses as well as cell motility, cytoskeletal organization, and angiogenesis. To assess the importance of a Met-regulated gene expression signature, a comparative functional genomic approach was applied to 242 human hepatocellular carcinomas (HCCs) and 7 metastatic liver lesions. Cluster analysis revealed that a subset of human HCCs and all liver metastases shared the Met-induced expression signature. Furthermore, the presence of the Met signature showed significant correlation with increased vascular invasion rate and microvessel density as well as with decreased mean survival time of HCC patients. We conclude that the genetically defined gene expression signatures in combination with comparative functional genomics constitute an attractive paradigm for defining both the function of oncogenic pathways and the clinically relevant subgroups of human cancers. [Abstract reproduced by permission of J Clin Invest 2006;116:1582-1595].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal activation of DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems is a compelling likelihood with significant implications in both cancer biology and treatment. Here, we show that due to a potential substrate switch, mutated variants of the receptor for hepatocyte growth factor Met, but not the wild-type form of the receptor, directly couple to the Abl tyrosine kinase and the Rad51 recombinase, two key signaling elements of homologous recombination-based DNA repair. Treatment of cells that express the mutated receptor variants with the Met inhibitor SU11274 leads, in a mutant-dependent manner, to a reduction of tyrosine phosphorylated levels of Abl and Rad51, impairs radiation-induced nuclear translocation of Rad51, and acts as a radiosensitizer together with the p53 inhibitor pifithrin-alpha by increasing cellular double-strand DNA break levels following exposure to ionizing radiation. Finally, we propose that in order to overcome a mutation-dependent resistance to SU11274, this aberrant molecular axis may alternatively be targeted with the Abl inhibitor, nilotinib.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implementation of effective substance abuse treatment programs in community settings is a high priority. The selection of a proven cost-effective model is a first step; however, difficulty arises when the model is imported into a community setting. The Center on Substance Abuse Treatment selected a brief substance abuse treatment program for adolescents, the MET/CBT-5 program, determined to be the most cost-effective protocol in the Cannabis Youth Treatment trial, for implementation in two cohorts of Effective Adolescent Treatment grantees. A qualitative investigation of the protocol implementation with nine sites in the second cohort chronicled adaptations made by grantees and prospects for sustainability. The study found that agencies introduced adaptations without seeming to be aware of potential effects on validity. In most sites, sessions were lengthened or added to accommodate individual client needs, address barriers to client participation, and provide consistency with current norms of treatment. Implications for fidelity of future implementation projects are addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated if the MET-activating point mutation Y1253D influences clinical outcomes in patients with advanced squamous cell carcinoma of the head and neck (HNSCC). The study population consisted of 152 HNSCC patients treated by hyperfractionated radiotherapy alone or concomitant with chemotherapy between September 1994 and July 2000. Tumors were screened for the presence of the MET-activating point mutation Y1253D. Seventy-eight patients (51%) received radiotherapy alone, 74 patients (49%) underwent radiotherapy concomitant with chemotherapy. Median patient age was 54 years and median follow-up was 5.5 years. Distant metastasis-free survival, local relapse-free survival and overall survival were compared with MET Y1253D status. During follow-up, 29 (19%) patients developed distant metastasis. MET Y1253D was detected in tumors of 21 out of 152 patients (14%). Distant metastasis-free survival (P = 0.008) was associated with MET Y1253D. In a multivariate Cox regression model, adjusted for T-category, only presence of MET Y1253D was associated with decreased distant metastasis-free survival: hazard ratio = 2.5 (95% confidence interval: 1.1, 5.8). The observed association between MET Y1253D-activating point mutation and decreased distant metastasis-free survival in advanced HNSCC suggests that MET may be a potential target for specific treatment interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.