559 resultados para Mesoporous bioglass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous nanoscale zircoina zeolite was firstly synthesized via solid state - Structure directing method without addition of any stabilizer. The sample bears lamellar or worm pore structures, relatively high surface area compared with that reported. The mesoporous nanosize structure can also resist higher calcination temperature. The introduction of above zirconia to the catalyst of methanol synthesis dedicates the nanosize particle size to the catalyst, which significantly changes the physical structure and electronic effect of the catalyst. The catalyst shows higher catalytic activity and selectivity to methanol. The active sites for methanol synthesis are demonstrated over various catalysts in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous, high surface area TiO2 with anatase or rutile crystalline domains is advantageous for high efficiency photonic devices. Here, we report a new route to the synthesis of mesoporous titania with full anatase crystalline domains. This route involves the preparation of anatase nanocrystalline seed suspensions as the titania precursor and a block copolymer surfactant, Pluronic P123 as the template for the hydrothermal self-assembly process. A large pore (7 - 8 nm) mesoporous titania with a high surface area of 106 - 150 m(2)/g after calcination at 400degreesC for 4 h in air is achieved. Increasing the hydrothermal temperature decreases the surface area and creates larger pores. Characteristics of the seed precursors as well as the resultant mesoporous titania powder were studied using XRD analysis, N-2-adsorption/desorption analysis, and TEM. We believe these materials will be especially useful for photoelectrochemical solar cell and photocatalysis applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed ammonia-water vapor postsynthesis treatment provides a simple and convenient method for stabilizing mesostructured silica films. X-ray diffraction, transmission electron microscopy, nitrogen adsorption/desorption, and solid-state NMR (C-13, Si-29) were applied to study the effects of mixed ammonia-water vapor at 90 degreesC on the mesostructure of the films. An increased cross-linking of the silica network was observed. Subsequent calcination of the silica films was seen to cause a bimodal pore-size distribution, with an accompanying increase in the volume and surface area ratios of the primary (d = 3 nm) to secondary (d = 5-30 nm) pores. Additionally, mixed ammonia-water treatment was observed to cause a narrowing of the primary pore-size distribution. These findings have implications for thin film based applications and devices, such as sensors, membranes, or surfaces for heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified-templated- hydrothermal technique was used to prepare mesoporous titania powders through the interaction of tiny anatase seeds (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate here the diffusion of n-decane in nanoporous MCM-41 silicas with pore diameters between 3.0 and 4.3 nm, and at various temperatures and purge flow rates, by the Zero Length Column method. A complete-time-range analysis of desorption curves is used to derive the diffusion coefficient, and the effect of pore size, purge flow rate and temperature on the diffusion character is systematically studied. The results show that the calculated low-coverage diffusivity values are strongly dependent on temperature but only weakly dependent on pore size. The study reveals that transport is controlled by intracrystalline diffusion and dominated by sorbate-sorbent interaction, with the experimental isosteric heat matching the potential energy of flat-lying n-decane molecules on the surface, determined using a united atom model. The diffusion activation energy and adsorption isosteric heat at zero loading for the different pore size MCM-41 samples vary in a narrow range respectively, and their ratio is essentially constant over the pore size range studied. The study shows that the ZLC method is an effective tool to investigate the diffusion kinetics of hydrocarbons in mesoporous MCM-41 materials. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermodynamic analysis of nitrogen adsorption in cylindrical pores of MCM-41 and SBA-15 samples at 77 K is presented within the framework of the Broekhoff and de Boer (BdB) theory. We accounted for the effect of the solid surface curvature on the potential exerted by the pore walls. The developed model is in quantitative agreement with the non-local density functional theory (NLDFT) for pores larger than 2 tun. This modified BdB theory accounting for the Curvature Dependent Potential (CDP-BdB) was applied to determine the pore size distribution (PSD) of a number of MCM-41 and SBA-15 samples on the basis of matching the equilibrium theoretical isotherm against the adsorption branch of the experimental isotherm. In all cases investigated the PSDs determined with the new approach are very similar to those determined with the non-local density functional theory also using the same basis of matching of theoretical isotherm against the experimental adsorption branch. The developed continuum theory is very simple in its utilization, suggesting that CDP-BdB could be used as an alternative tool to obtain PSD for mesoporous solids from the analysis of adsorption branch of adsorption isotherms of any sub-critical fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose an improvement of the classical Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk-Jaroniec-Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than similar to4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol-gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore - composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol-gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered mesoporous carbon CMK-5 was comprehensively tested for the first time as electrode materials in lithium ion battery. The surface morphology, pore structure and crystal structure were investigated by Scanning Electronic Microscopy (SEM), N-2 adsorption technique and X-ray diffraction (XRD) respectively. Electrochemical properties of CMK-5 were studied by galvanostatic cycling and cyclic voltammetry, and compared with conventional anode material graphite. Results showed that the reversible capacity of CMK-5 was 525 mAh/g at the third charge-discharge cycle and that CMK-5 was more compatible for quick charge-discharge cycling because of its special mesoporous structure. Of special interest was that the CMK-5 gave no peak on its positive sweep of the cyclic voltammetry, which was different from all the other known anode materials. Besides, X-ray photoelectron spectroscopy (XPS) and XRD were also applied to investigate the charge-discharge characteristics of CMK-5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study on the structural properties and external morphologies of large-pore mesoporous organosilicas synthesized using triblock copolymer EO20PO70EO20 as a template under low-acid conditions was carried out. By employing the characterization techniques of SAXS, FE-SEM, and physical adsorption of N-2 in combination with alpha(s)-plot method, the structural properties and external morphologies of large-pore mesoporous organosilicas were critically examined and compared with that of their pure-silica counterparts synthesized under similar conditions. It has been observed that unlike mesoporous pure silicas, the structural and morphological properties of mesoporous organosilicas are highly acid-sensitive. High-quality mesoporous organosilicas can only be obtained from synthesis gels with the molar ratios of HCl/H2O between 7.08 x 10(-4) and 6.33 x 10(-3), whereas mesoporous pure silicas with well-ordered structure can be obtained in a wider range of acid concentration. Simply by adjusting the HCl/H2O molar ratios, the micro-, meso-, and macroporosities of the organosilica materials can be finely tuned without obvious effect on their structural order. Such a behavior is closely related to their acid-controlled morphological evolution: from necklacelike fibers to cobweb-supported pearl-like particles and to nanosized particulates.