986 resultados para Mesoporous Materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The small size of micropores (typically <1 nm) in zeolites causes slow diffusion of reactant and product molecules in and out of the pores and negatively impacts the product selectivity of zeolite based catalysts, for example, fluid catalytic cracking (FCC) catalysts. Size-tailored mesoporosity was introduced into commercial zeolite Y crystals by a simple surfactant-templating post-synthetic mesostructuring process. The resulting mesoporous zeolite Y showed significantly improved product selectivity in both laboratory testing and refinery trials. Advanced characterization techniques such as electron tomography, three-dimensional rotation electron diffraction, and high resolution gas adsorption coupled with hysteresis scanning and density functional theory, unambiguously revealed the intracystalline nature and connectivity of the introduced mesopores. They can be considered as molecular highways that help reactant and product molecules diffuse quickly to and away from the catalytically active sites within the zeolite crystals and, thus, shift the selectivity to favor the production of more of the valuable liquid fuels at reduced yields of coke and unconverted feed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supported iron oxide nanoparticles have been incorporated onto hierarchical zeolites by microwave-assisted impregnation and mechanochemical grinding. Nanoparticle-functionalised porous zeolites were characterised by a number of analytical techniques such as XRD, N2 physisorption, TEM, and surface acidity measurements. The catalytic activities of the synthesised nanomaterials were investigated in an alkylation reaction. The results pointed to different species with varying acidity and accessibility in the materials, which provided essentially different catalytic activities in the alkylation of toluene with benzyl chloride under microwave irradiation, selected as the test reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many approaches to mesoporous zeolites have been reported. The preparation of mesoporous zeolite Y, as the most widely used zeolite in catalysis, its properties, and its application in fluid catalytic cracking (FCC) and hydrocracking are reviewed. Finally, the scale-up and use of mesostrutured zeolite Y on an industrial scale are described, as the first commercial application of hierarchical zeolites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An active hydrogenation Pd complex has been immobilised by impregnation on CNTs submitted to several treatments that lead to important differences in their surface chemistry and in the proportion of tubes with both ends open. Most of the hybrid catalysts are more active than the complex in homogeneous phase, but the support properties have an important impact in the catalytic activity. In general, the more developed the surface chemistry, the lower the activity. However, when CNTs are open at both ends, the Pd complex can enter the tubular cavity and an important enhancement of the catalytic activity due to a confinement effect is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a technique for equilibria characterization of activated carbon having slit-shaped pores. This method was first developed by Do (Do, D. D. A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interface Science, September 24-26, 1998 Chiba, Japan) and applied by his group and other groups for characterization of pore size distribution (PSD) as well as adsorption equilibria determination of a wide range of hydrocarbons. It is refined in this paper and compared with the grand canonical Monte Carlo (GCMG) simulation and density functional theory (DFT). The refined theory results in a good agreement between the pore filling pressure versus pore width and those obtained by GCMG and DFT. Furthermore, our local isotherms are qualitatively in good agreement with those obtained by the GCMC simulations. The main advantage of this method is that it is about 4 orders of magnitude faster than the GCMC simulations, making it suitable for optimization studies and design purposes. Finally, we apply our method and the GCMG in the derivation of the PSD of a commercial activated carbon. It was found that the PSD derived from our method is comparable to that derived from the GCMG simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison has been made between the spectroscopic properties of the laser dye rhodamine 6G (R6G) in mesostructured titanium dioxide (TiO2) and in ethanol. Steady-state excitation and emission techniques have been used to probe the dye-matrix interactions. We show that the TiO2-nanocomposite studied is a good host for R6G, as it allows high dye concentrations, while keeping dye molecules isolated, and preventing aggregation. Our findings have important implications in the context of solid state dye-lasers and microphotonic device applications. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study here the adsorption of hexane on nanoporous MCM-41 silica at 303, 313, and 323 K, for various pore diameters between 2.40 and 4.24 nm. Adsorption equilibria, measured thermogravimetrically, show that all the isotherms, that are somewhat akin to those of type V, exhibit remarkably sharp capillary adsorption phase transition steps and are reversible. The position of the phase transition step gradually shifts from low to high relative pressure with an increase in the temperature as well as the pore sizes. The isosteric heats of adsorption derived from the equilibrium information using the Clapeyron equation reveal a gradual decrease with increasing adsorbed amount because of the surface heterogeneity but approach a constant value near the phase transition. A decrease in the pore size results in an increase in the isosteric heat of adsorption because of the increased dispersion forces. A simple strategy, based on the Broekhoff and De Boer adsorption theory, successfully interprets the hexane adsorption isotherms for the different pore size MCM-41 samples. The parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting the monolayer region prior to capillary condensation and the experimental phase transition simultaneously, for some pore sizes. Subsequently, the parameters are used to predict the adsorption isotherm on other pore size samples, which showed good agreement with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesostructured titania thin films were prepared by an evaporation-induced self-assembly process. The highly acidic sot precursors contained titanium(IV) tetraisopropoxide (TTIP) as a titanium source, a tri-block copolymer Pluronic P123 as a template, and acetylacetonate and HCl as hydrolysis inhibitors. Characteristics of the resultant titania thin films were studied using X-ray diffraction (XRD) analysis, N-2-adsorption/desorption analysis, and transmission electron microscopy (TEM). XRD and TEM investigations on the as-synthesised films revealed the appearance of cubic-like, pseudohexagonal, and lamellar mesophases; depending on the amount of water in the sols of film precursors. Template removal by a calcination process yields high surface area (320-360 m(2)/g) mesoporous materials with crystalline anatase frameworks. Water content also influences the degree of anatase crystallinity of the calcined films. Higher water content resulted in improved anatase crystallinity. These nanostructured materials are of interest for photocatalysts, pbotoelectrochemical solar cells and other photonic devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cassava rhizome was catalytically pyrolysed at 500 °C using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in order to investigate the effect of catalysts on bio-oil properties. The catalysts studied were zeolite ZSM-5, two aluminosilicate mesoporous materials Al-MCM-41 and Al-MSU-F, and a proprietary commercial catalyst alumina-stabilised ceria MI-575. The influence of catalysts on pyrolysis products was observed through the yields of aromatic hydrocarbons, phenols, lignin-derived compounds, carbonyls, methanol and acetic acid. Results showed that all the catalysts produced aromatic hydrocarbons and reduced oxygenated lignin derivatives, thus indicating an improvement of bio-oil heating value and viscosity. Among the catalysts, ZSM-5 was the most active to all the changes in pyrolysis products. In addition, all the catalysts with the exception of MI-575 enhanced the formation of acetic acid. This is clearly a disadvantage with respect to the level of pH in the liquid bio-fuel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.