927 resultados para Mercury methylation
Resumo:
Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals ((OH)-O-.) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that (OH)-O-. photoproduction increased from 1.80 to 2.74 muM by increasing the HA concentration from 10 to 40 mg L-1 at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of (OH)-O-. in the HA solution with Fe(111) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of (OH)-O-. in HA solution with algae with or without Fe(111) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of (OH)-O-. in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest (OH)-O-. photoproduction at pH 4.0.
Resumo:
IEECAS SKLLQG
Resumo:
Selective extraction of Mercury(II) using 1-naphthylthiourea-methyl isobutyl ketone (ANTU-MIBK) system from hydrochloric acid solutions (0.1-10 M) has been studied. Influence of foreign ions, acid and ligand concentrations has been investigated. Addition of ANTU in MIBK enhanced, extraction capacity of MIBK to several times. Low effect of foreign ions and high separation factors for a number of metal ions determined at 0.5 M hydrochloric acid concentration evaluated the proposed method efficient and selective. The experimental data obtained from application of the method for extraction of mercury from a synthetic aqueous solution reveal that more than 99% mercury can be separated from cadmium, zinc and selenium in a single step with five minutes equilibration
Resumo:
PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.
Resumo:
Thiosemicarbazone derivatives have been used as ion carriers for the preparation of PVC-matrix based mercury(II)-selective membrane sensors. The electrodes give near-Nernstian responses in the linear concentration range of 1.0×10-1-5.0×10-6 M with detection limits of the order of 10-6 M. The stable potentiometric signals are obtained within a short time period of 20-25s. The effect of different plasticizers has been studied and dioctylsebacate (DOS) found to give a better response in comparison to other plasticizers. Selectivity coefficient values (log KPotHg,M) have been evaluated using fixed interference method. Better selectivity for mercury(II) ions is observed over many of the monovalent (Na+, K+ and NH4+) and divalent ions (Mg2+, Ca2+, Zn2+, Pb2+, Ni2+, Co2+, etc.). The sensors have also been used as indicator electrodes in potentiometric titration of mercury(II) ions with EDTA and its determination in synthetic water samples.
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.