958 resultados para Memory space


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People remember moving objects as having moved farther along in their path of motion than is actually the case; this is known as representational momentum (RM). Some authors have argued that RM is an internalization of environmental properties such as physical momentum and gravity. Five experiments demonstrated that a similar memory bias could not have been learned from the environment. For right-handed Ss, objects apparently moving to the right engendered a larger memory bias in the direction of motion than did those moving to the left. This effect, clearly not derived from real-world lateral asymmetries, was relatively insensitive to changes in apparent velocity and the type of object used, and it may be confined to objects in the left half of visual space. The left–right effect may be an intrinsic property of the visual operating system, which may in turn have affected certain cultural conventions of left and right in art and other domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiation environment of space presents a significant threat to the reliability of nonvolatile memory technologies. Ionizing radiation disturbs the charge stored on floating gates, and cosmic rays can permanently damage thin oxides. A new memory technology based on the magnetic tunneling junction (MTJ) appears to offer superior resistance to radiation effects and virtually unlimited write endurance. A magnetic flip flop has a number of potential applications, such as the configuration memory in field-programmable logic devices. However, using MTJs in a flip flop requires radically different circuitry for storing and retrieving data. New techniques are needed to insure that magnetic flip flops are reliable in the radiation environment of space. We propose a new radiation-tolerant magnetic flip flop that uses the inherent resistance of the MTJ to increase its immunity to single event upset and employs a robust “Pac-man” magnetic element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the current issues of debate in the study of mild cognitive impairment (MCI) is deviations of oscillatory brain responses from normal brain states and its dynamics. This work aims to characterize the differences of power in brain oscillations during the execution of a recognition memory task in MCI subjects in comparison with elderly controls. Magnetoencephalographic (MEG) signals were recorded during a continuous recognition memory task performance. Oscillatory brain activity during the recognition phase of the task was analyzed by wavelet transform in the source space by means of minimum norm algorithm. Both groups obtained a 77% hit ratio. In comparison with healthy controls, MCI subjects showed increased theta (p < 0.001), lower beta reduction (p < 0.001) and decreased alpha and gamma power (p < 0.002 and p < 0.001 respectively) in frontal, temporal and parietal areas during early and late latencies. Our results point towards a dual pattern of activity (increase and decrease) which is indicative of MCI and specific to certain time windows, frequency bands and brain regions. These results could represent two neurophysiological sides of MCI. Characterizing these opposing processes may contribute to the understanding of the disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most data stream classification techniques assume that the underlying feature space is static. However, in real-world applications the set of features and their relevance to the target concept may change over time. In addition, when the underlying concepts reappear, reusing previously learnt models can enhance the learning process in terms of accuracy and processing time at the expense of manageable memory consumption. In this paper, we propose mining recurring concepts in a dynamic feature space (MReC-DFS), a data stream classification system to address the challenges of learning recurring concepts in a dynamic feature space while simultaneously reducing the memory cost associated with storing past models. MReC-DFS is able to detect and adapt to concept changes using the performance of the learning process and contextual information. To handle recurring concepts, stored models are combined in a dynamically weighted ensemble. Incremental feature selection is performed to reduce the combined feature space. This contribution allows MReC-DFS to store only the features most relevant to the learnt concepts, which in turn increases the memory efficiency of the technique. In addition, an incremental feature selection method is proposed that dynamically determines the threshold between relevant and irrelevant features. Experimental results demonstrating the high accuracy of MReC-DFS compared with state-of-the-art techniques on a variety of real datasets are presented. The results also show the superior memory efficiency of MReC-DFS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SRAM-based FPGAs are in-field reconfigurable an unlimited number of times. This characteristic, together with their high performance and high logic density, proves to be very convenient for a number of ground and space level applications. One drawback of this technology is that it is susceptible to ionizing radiation, and this sensitivity increases with technology scaling. This is a first order concern for applications in harsh radiation environments, and starts to be a concern for high reliability ground applications. Several techniques exist for coping with radiation effects at user application. In order to be effective they need to be complemented with configuration memory scrubbing, which allows error mitigation and prevents failures due to error accumulation. Depending on the radiation environment and on the system dependability requirements, the configuration scrubber design can become more or less complex. This paper classifies and presents current and novel design methodologies and architectures for SRAM-based FPGAs, and in particular for Xilinx Virtex-4QV/5QV, configuration memory scrubbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis integra un estudio reflexivo sobre la relación de dependencia entre la creación y la memoria a través del análisis de la última obra del escultor Juan Muñoz: Double Bind (Tate Modern, Londres, 2001). Desde esta posición es obligado replantear el análisis de la obra, lo que hace necesario su estudio cubriendo el mayor espectro posible de información accesible más allá de la obra en sí, para aproximarse a la convergencia entre memoria y creación. La perspectiva de análisis propuesta abre camino a nuevas consideraciones so¬bre la relevancia del conocimiento en el desarrollo del proceso creativo. Este análisis no debe tan sólo suponer una aportación al conocimiento del trabajo de Juan Muñoz. Debe también desprenderse de él la innegable participación y necesaria lectura del pasado en el presente. La amnesia de los tiempos pasados impide completar el atlas de imágenes en las que se apoya la creación impidiendo el conocimiento del origen de las fuentes de inspi¬ración y las bases de la creación de una determinada obra. Este hecho limita y distorsiona sus posibles interpretaciones. Pretendo un acercamiento al entendimiento de la forma de mirar y de crear a través del tiempo que es memoria. La memoria tiene un cometido de crucial importancia para la actividad mental y juega un papel fundamental en la conducta y en la creación. La obra es el resultado de la búsqueda de una idea que exprese algo que el creador no puede ex¬presar de otra manera. Es la necesidad de expresar las ideas mediante un lenguaje que se desarrolla en el tiempo y en el espacio, reflejo del ser que responde al pensamiento. Es una forma de experiencia donde subyacen las sendas del pasado y donde se plantea el futuro. Sólo el creador accede a la obra desde dentro, el observador llega a ella desde el exterior y mediante su propia subjetividad. Las obras son formas de experiencia de sus autores, comunicar el mensaje de dicha experiencia supone por tanto interpretar. Persiguiendo la necesidad de saber y entender, pretender explicar el sentido de una cosa implica una apreciación intencionada asociada al entendimiento del intérprete. Las obras son produc¬tos que portan un mensaje y que contienen en su estructura las trazas del tiempo vivido por su creador. Si se quiere adquirir un acercamiento que represente la posición de un autor, será necesario no solo mirar a través de ella, si no introducirse en el contexto de su historia. Mirar hacia atrás, hacia la profundidad del presente para tener conciencia del pensamiento presente y futuro. Recorrer de este modo la instalación Double Bind de Juan Muñoz proporciona una síntesis de sus preocupaciones e intereses a la vez que aporta un conocimiento no necesariamente inmediato, pero relevante y trascendente de la obra, su creador y la historia. ABSTRACT This thesis comprises a reflective study of the dependence relationship between creation and memory through the analysis of the latest work by the sculptor Juan Muñoz: Double Bind (Tate Modern, London, 2001). From this position, it is mandatory to rethink the analysis of the work, making it necessary to cover the widest possible range of information available beyond the work itself, in order to obtain a closer view of the convergence between memory and creation. The proposed analytical approach opens up new considerations on the relevance of knowledge during the development of the creative process. This analysis should not only make a contribution to the knowledge of the work of Juan Muñoz. It should also infer the undeniable involvement and the necessary reading of the past in the present. Amnesia regarding past makes it impossible to complete the atlas of images on which the creation is based, blocking knowledge of the origin of the sources of inspiration and the basis for the creation of a specific work. This fact limits and distorts its possible interpretations. My intention is an approach to how to understand memory as the way of looking and creating over time. Memory has a crucial role to mental activity and plays a key role in behaviour and creation. The work is the result of finding an idea that expresses something that the creator can not express otherwise. It is the need to express ideas by means of a language that develops throughout time and space, a reflection of the being that responds to the thought. It is a way of experience underlying the paths of the past and where the future is set out. Only the creator can access the work from the inside. The observer sees it from the outside and in accordance with his/her own subjectivity. The works form a part of the experience of their authors, thus implying the interpretation of the message of their experience being passed on. The pursuit of knowledge and understanding, and trying to explain the meaning of something implies a deliberate appreciation associated with the understanding of the interpreter. The works are products bearing a message and containing in their structure traces of the time lived by their creator. If one wants to come close to what the author’s posture represents, it will not only be necessary to penetrate it, but also to introduce oneself into the context of its history. Take a look back, towards the depth of the present in order to become aware of present and future thinking. To go across the installation of Double Bind by Juan Muñoz in this way offers a synthesis of his concerns and interests while also providing a not necessarily immediate knowledge, but one which is relevant and important to the work, its creator and history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological bases of learning and memory are being revealed today with a wide array of molecular approaches, most of which entail the analysis of dysfunction produced by gene disruptions. This perspective derives both from early “genetic dissections” of learning in mutant Drosophila by Seymour Benzer and colleagues and from earlier behavior-genetic analyses of learning and in Diptera by Jerry Hirsch and coworkers. Three quantitative-genetic insights derived from these latter studies serve as guiding principles for the former. First, interacting polygenes underlie complex traits. Consequently, learning/memory defects associated with single-gene mutants can be quantified accurately only in equilibrated, heterogeneous genetic backgrounds. Second, complex behavioral responses will be composed of genetically distinct functional components. Thus, genetic dissection of complex traits into specific biobehavioral properties is likely. Finally, disruptions of genes involved with learning/memory are likely to have pleiotropic effects. As a result, task-relevant sensorimotor responses required for normal learning must be assessed carefully to interpret performance in learning/memory experiments. In addition, more specific conclusions will be obtained from reverse-genetic experiments, in which gene disruptions are restricted in time and/or space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the cerebral cortex, the small volume of the extracellular space in relation to the volume enclosed by synapses suggests an important functional role for this relationship. It is well known that there are atoms and molecules in the extracellular space that are absolutely necessary for synapses to function (e.g., calcium). I propose here the hypothesis that the rapid shift of these atoms and molecules from extracellular to intrasynaptic compartments represents the consumption of a shared, limited resource available to local volumes of neural tissue. Such consumption results in a dramatic competition among synapses for resources necessary for their function. In this paper, I explore a theory in which this resource consumption plays a critical role in the way local volumes of neural tissue operate. On short time scales, this principle of resource consumption permits a tissue volume to choose those synapses that function in a particular context and thereby helps to integrate the many neural signals that impinge on a tissue volume at any given moment. On longer time scales, the same principle aids in the stable storage and recall of information. The theory provides one framework for understanding how cerebral cortical tissue volumes integrate, attend to, store, and recall information. In this account, the capacity of neural tissue to attend to stimuli is intimately tied to the way tissue volumes are organized at fine spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Important changes have occurred in recent years in the attitude of a majority of the German elite towards the history of the 20th century and the political identity built on collective memory. Until recently, the sense of guilt for the crimes of the Third Reich and the obligation to remember were prevalent. While these two elements of Germany's memory of World War II are still important, currently the focus increasingly shifts to the German resistance against Nazism and the fate of the Germans who suffered in the war. Positive references to Germany's post-war history also occupy more and more space in the German memory. In 2009, i.e. the year of the 60th anniversary of the Federal Republic of Germany and the 20th anniversary of the fall of Communism, the efforts of German public institutions concentrate on promoting a new canon of history built around the successful democratisation and Germany's post-war economic success. The purpose behind these measures is to build a common historical memory that could be shared by the eastern and western parts of Germany and appeal to Germany's immigrants, who account for a growing proportion of the society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the boundaries among imagery, memory, and perception by measuring gaze during retrieved versus imagined visual information. Eye fixations during recall were bound to the location at which a specific stimulus was encoded. However, eye position information generalized to novel objects of the same category that had not been seen before. For example, encoding an image of a dog in a specific location enhanced the likelihood of looking at the same location during subsequent mental imagery of other mammals. The results suggest that eye movements can also be launched by abstract representa- tions of categories and not exclusively by a single episode or a specific visual exemplar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.