942 resultados para Medium access control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter considers the Multiband Orthogonal Frequency Division Multiplexing (MB- OFDM) modulation and demodulation with the intention to optimize the Ultra-Wideband (UWB) system performance. OFDM is a type of multicarrier modulation and becomes the most important aspect for the MB-OFDM system performance. It is also a low cost digital signal component efficiently using Fast Fourier Transform (FFT) algorithm to implement the multicarrier orthogonality. Within the MB-OFDM approach, the OFDM modulation is employed in each 528 MHz wide band to transmit the data across the different bands while also using the frequency hopping technique across different bands. Each parallel bit stream can be mapped onto one of the OFDM subcarriers. Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for MB-OFDM in the ECMA-368 defined UWB radio platform. A dual QPSK soft-demapper is suitable for ECMA-368 that exploits the inherent Time-Domain Spreading (TDS) and guard symbol subcarrier diversity to improve the receiver performance, yet merges decoding operations together to minimize hardware and power requirements. There are several methods to demap the DCM, which are soft bit demapping, Maximum Likelihood (ML) soft bit demapping, and Log Likelihood Ratio (LLR) demapping. The Channel State Information (CSI) aided scheme coupled with the band hopping information is used as a further technique to improve the DCM demapping performance. ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. An alternative high data rate modulation scheme termed Dual Circular 32-QAM that fits within the configuration of the current standard increasing system throughput thus maintaining the high rate throughput even with a moderate level of dropped packets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless local area networks (WLANs) based on the IEEE 802.11 standard are now widespread. Most are used to provide access for mobile devices to a conventional wired infrastructure, and some are used where wires are not possible, forming an ad hoc network of their own. There are several varieties at the physical or radio layer (802.11, 802.11a, 802.11b, 802.11g), with each featuring different data rates, modulation schemes and transmission frequencies. However, all of them share a common medium access control (MAC) layer. As this is largely based on a contention approach, it does not allow prioritising of traffic or stations, so it cannot easily provide the quality of service (QoS) required by time-sensitive applications, such as voice or video transmission. In order to address this shortfall of the technology, the IEEE set up a task group that is aiming to enhance the MAC layer protocol so that it can provide QoS. The latest draft at the time of writing is Draft 11, dated October 2004. The article describes the yet-to-be-ratified 802.11e standard and is based on that draft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task specifically in the case of implanted devices such as pacemakers, extending the lifetime of sensor nodes in WBANs is one of the greatest challenges. To achieve this goal, WBAN systems employ low-power communication transceivers and low duty cycle Medium Access Control (MAC) protocols. Although, currently used MAC protocols are able to reduce the energy consumption of devices for transmission and reception, yet they are still unable to offer an ultimate energy self-sustaining solution for low-power MAC protocols. This paper proposes to utilize energy harvesting technologies in low-power MAC protocols. This novel approach can further reduce energy consumption of devices in WBAN systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient Medium Access Control (MAC) and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

VALENTIM, R. A. M. ; MORAIS, A. H. F. ; SOUZA, V. S. V ; ARAUJO JUNIOR, H. B. ; BRANDAO, G. B. ; GUERREIRO, A. M. G. . Rede de Controle em Ambiente Hospitalar: um protocolo multiciclos para automação hospitalar sobre IEEE 802.3 com IGMP Snooping. Revista Ciência e Tecnologia, v. 11, p. 19, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes the specification and performance analysis of a real-time communication mechanism for IEEE 802.11/11e standard. This approach is called Group Sequential Communication (GSC). The GSC has a better performance for dealing with small data packets when compared to the HCCA mechanism by adopting a decentralized medium access control using a publish/subscribe communication scheme. The main objective of the thesis is the HCCA overhead reduction of the Polling, ACK and QoS Null frames exchanged between the Hybrid Coordinator and the polled stations. The GSC eliminates the polling scheme used by HCCA scheduling algorithm by using a Virtual Token Passing procedure among members of the real-time group to whom a high-priority and sequential access to communication medium is granted. In order to improve the reliability of the mechanism proposed into a noisy channel, it is presented an error recovery scheme called second chance algorithm. This scheme is based on block acknowledgment strategy where there is a possibility of retransmitting when missing real-time messages. Thus, the GSC mechanism maintains the real-time traffic across many IEEE 802.11/11e devices, optimized bandwidth usage and minimal delay variation for data packets in the wireless network. For validation purpose of the communication scheme, the GSC and HCCA mechanisms have been implemented in network simulation software developed in C/C++ and their performance results were compared. The experiments show the efficiency of the GSC mechanism, especially in industrial communication scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation aims to develop a software applied to a communication system for a wireless sensor network (WSN) for tracking analog and digital variables and control valve of the gas flow in artificial oil s elevation units, Plunger Lift type. The reason for this implementation is due to the fact that, in the studied plant configuration, the sensors communicate with the PLC (Programmable and Logic Controller) by the cables and pipelines, making any changes in that system, such as changing the layout of it, as well as inconveniences that arise from the nature of the site, such as the vicinity s animals presence that tend to destroy the cables for interconnection of sensors to the PLC. For software development, was used communication polling method via SMAC protocol (Simple Medium Access ControlIEEE 802.15.4 standard) in the CodeWarrior environment to which generated a firmware, loaded into the WSN s transceivers, present in the kit MC13193-EVK, (all items described above are owners of Freescale Semiconductors Inc.). The network monitoring and parameterization used in its application, was developed in LabVIEW software from National Instruments. The results were obtained through the observation of the network s behavior of sensors proposal, focusing on aspects such as: indoor and outdoor quantity of packages received and lost, general aspects of reliability in data transmission, coexistence with other types of wireless networks and power consumption under different operating conditions. The results were considered satisfactory, which showed the software efficiency in this communication system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses some aspects related to Wireless Sensor Networks over the IEEE 802.15.4 standard, and proposes, for the very first time, a mesh network topology with geographic routing integrated to the open Freescale protocol (SMAC - Simple Medium Access Control). For this is proposed the SMAC routing protocol. Before this work the SMAC protocol was suitable to perform one hop communications only. However, with the developed mechanisms, it is possible to use multi-hop communication. Performance results from the implemented protocol are presented and analyzed in order to define important requirements for wireless sensor networks, such as robustness, self-healing property and low latency. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro è stato suddiviso in tre macro-aree. Una prima riguardante un'analisi teorica di come funzionano le intrusioni, di quali software vengono utilizzati per compierle, e di come proteggersi (usando i dispositivi che in termine generico si possono riconoscere come i firewall). Una seconda macro-area che analizza un'intrusione avvenuta dall'esterno verso dei server sensibili di una rete LAN. Questa analisi viene condotta sui file catturati dalle due interfacce di rete configurate in modalità promiscua su una sonda presente nella LAN. Le interfacce sono due per potersi interfacciare a due segmenti di LAN aventi due maschere di sotto-rete differenti. L'attacco viene analizzato mediante vari software. Si può infatti definire una terza parte del lavoro, la parte dove vengono analizzati i file catturati dalle due interfacce con i software che prima si occupano di analizzare i dati di contenuto completo, come Wireshark, poi dei software che si occupano di analizzare i dati di sessione che sono stati trattati con Argus, e infine i dati di tipo statistico che sono stati trattati con Ntop. Il penultimo capitolo, quello prima delle conclusioni, invece tratta l'installazione di Nagios, e la sua configurazione per il monitoraggio attraverso plugin dello spazio di disco rimanente su una macchina agent remota, e sui servizi MySql e DNS. Ovviamente Nagios può essere configurato per monitorare ogni tipo di servizio offerto sulla rete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in miniaturization of electronic components and design of wireless systems paved the way towards ubiquitous and pervasive communications, enabling anywhere and anytime connectivity. Wireless devices present on, inside, around the human body are becoming commonly used, leading to the class of body-centric communications. The presence of the body with all its peculiar characteristics has to be properly taken into account in the development and design of wireless networks in this context. This thesis addresses various aspects of body-centric communications, with the aim of investigating network performance achievable in different scenarios. The main original contributions pertain to the performance evaluation for Wireless Body Area Networks (WBANs) at the Medium Access Control layer: the application of Link Adaptation to these networks is proposed, Carrier Sense Multiple Access with Collision Avoidance algorithms used for WBAN are extensively investigated, coexistence with other wireless systems is examined. Then, an analytical model for interference in wireless access network is developed, which can be applied to the study of communication between devices located on humans and fixed nodes of an external infrastructure. Finally, results on experimental activities regarding the investigation of human mobility and sociality are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A local area network that can support both voice and data packets offers economic advantages due to the use of only a single network for both types of traffic, greater flexibility to changing user demands, and it also enables efficient use to be made of the transmission capacity. The latter aspect is very important in local broadcast networks where the capacity is a scarce resource, for example mobile radio. This research has examined two types of local broadcast network, these being the Ethernet-type bus local area network and a mobile radio network with a central base station. With such contention networks, medium access control (MAC) protocols are required to gain access to the channel. MAC protocols must provide efficient scheduling on the channel between the distributed population of stations who want to transmit. No access scheme can exceed the performance of a single server queue, due to the spatial distribution of the stations. Stations cannot in general form a queue without using part of the channel capacity to exchange protocol information. In this research, several medium access protocols have been examined and developed in order to increase the channel throughput compared to existing protocols. However, the established performance measures of average packet time delay and throughput cannot adequately characterise protocol performance for packet voice. Rather, the percentage of bits delivered within a given time bound becomes the relevant performance measure. Performance evaluation of the protocols has been examined using discrete event simulation and in some cases also by mathematical modelling. All the protocols use either implicit or explicit reservation schemes, with their efficiency dependent on the fact that many voice packets are generated periodically within a talkspurt. Two of the protocols are based on the existing 'Reservation Virtual Time CSMA/CD' protocol, which forms a distributed queue through implicit reservations. This protocol has been improved firstly by utilising two channels, a packet transmission channel and a packet contention channel. Packet contention is then performed in parallel with a packet transmission to increase throughput. The second protocol uses variable length packets to reduce the contention time between transmissions on a single channel. A third protocol developed, is based on contention for explicit reservations. Once a station has achieved a reservation, it maintains this effective queue position for the remainder of the talkspurt and transmits after it has sensed the transmission from the preceeding station within the queue. In the mobile radio environment, adaptions to the protocols were necessary in order that their operation was robust to signal fading. This was achieved through centralised control at a base station, unlike the local area network versions where the control was distributed at the stations. The results show an improvement in throughput compared to some previous protocols. Further work includes subjective testing to validate the protocols' effectiveness.