885 resultados para Mechanical ventilation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Patients with high cervical spinal cord injury are usually dependent on mechanical ventilation support, which, albeit life saving, is associated with complications and decreased life expectancy because of respiratory infections. Diaphragm pacing stimulation (DPS), sometimes referred to as electric ventilation, induces inhalation by stimulating the inspiratory muscles. Our objective was to highlight the indications for and some aspects of the surgical technique employed in the laparoscopic insertion of the DPS electrodes, as well as to describe five cases of tetraplegic patients submitted to the technique. Methods: Patient selection involved transcutaneous phrenic nerve studies in order to determine whether the phrenic nerves were preserved. The surgical approach was traditional laparoscopy, with four ports. The initial step was electrical mapping in order to locate the "motor points" (the points at which stimulation would cause maximal contraction of the diaphragm). If the diaphragm mapping was successful, four electrodes were implanted into the abdominal surface of the diaphragm, two on each side, to stimulate the branches of the phrenic nerve. Results: Of the five patients, three could breathe using DPS alone for more than 24 h, one could do so for more than 6 h, and one could not do so at all. Conclusions: Although a longer follow-up period is needed in order to reach definitive conclusions, the initial results have been promising. At this writing, most of our patients have been able to remain ventilator-free for long periods of time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. Objective To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. Data Sources MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Study Selection Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Data Extraction Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Data Synthesis Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I-2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I-2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I-2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I-2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I-2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I-2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I-2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Conclusions Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation. JAMA. 2012;308(16):1651-1659 www.jama.com

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Introduction Noninvasive ventilation (NIV), as a weaning-facilitating strategy in predominantly chronic obstructive pulmonary disease (COPD) mechanically ventilated patients, is associated with reduced ventilator-associated pneumonia, total duration of mechanical ventilation, length of intensive care unit (ICU) and hospital stay, and mortality. However, this benefit after planned extubation in patients with acute respiratory failure of various etiologies remains to be elucidated. The aim of this study was to determine the efficacy of NIV applied immediately after planned extubation in contrast to oxygen mask (OM) in patients with acute respiratory failure (ARF). Methods A randomized, prospective, controlled, unblinded clinical study in a single center of a 24-bed adult general ICU in a university hospital was carried out in a 12-month period. Included patients met extubation criteria with at least 72 hours of mechanical ventilation due to acute respiratory failure, after following the ICU weaning protocol. Patients were randomized immediately before elective extubation, being randomly allocated to one of the study groups: NIV or OM. We compared both groups regarding gas exchange 15 minutes, 2 hours, and 24 hours after extubation, reintubation rate after 48 hours, duration of mechanical ventilation, ICU length of stay, and hospital mortality. Results Forty patients were randomized to receive NIV (20 patients) or OM (20 patients) after the following extubation criteria were met: pressure support (PSV) of 7 cm H2O, positive end-expiratory pressure (PEEP) of 5 cm H2O, oxygen inspiratory fraction (FiO2) ≤ 40%, arterial oxygen saturation (SaO2) ≥ 90%, and ratio of respiratory rate and tidal volume in liters (f/TV) < 105. Comparing the 20 patients (NIV) with the 18 patients (OM) that finished the study 48 hours after extubation, the rate of reintubation in NIV group was 5% and 39% in OM group (P = 0.016). Relative risk for reintubation was 0.13 (CI = 0.017 to 0.946). Absolute risk reduction for reintubation showed a decrease of 33.9%, and analysis of the number needed to treat was three. No difference was found in the length of ICU stay (P = 0.681). Hospital mortality was zero in NIV group and 22.2% in OM group (P = 0.041). Conclusions In this study population, NIV prevented 48 hours reintubation if applied immediately after elective extubation in patients with more than 3 days of ARF when compared with the OM group. Trial Registration number ISRCTN: 41524441.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although postmortem imaging has gained prominence in the field of forensic medicine, evaluation of the postmortem lung remains problematic. Specifically, differentiation of normal postmortem changes and pathological pulmonary changes is challenging and at times impossible. In this study, five corpses were ventilated using a mechanical ventilator with a pressure of 40 mbar (40.8 cm H(2)O). The ventilation was performed via an endotracheal tube, a larynx mask or a continuous positive airway pressure mask. Postmortem computed tomographic images of the lungs before and with a ventilation of 40 mbar (40.8 cm H(2)O) were evaluated and the lung volumes were measured with segmentation software. Postmortem ventilation led to a clearly visible decrease of both the density in the dependant parts of the lungs and ground glass attenuation, whereas consolidated areas remained unchanged. Furthermore, a mean increase in the lung volume of 2.10 l was seen. Pathological changes such as septal thickening or pulmonary nodules in the lung parenchyma became more detectable with postmortem ventilation. Intracorporal postmortem mechanical ventilation of the lungs appears to be an effective method for enhancing detection of small pathologies of the lung parenchyma as well as for discriminating between consolidation, ground glass attenuation and position-dependent density.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various supportive and adjunctive therapies to conventional mechanical ventilation have been evaluated in patients with acute lung injury and acute respiratory distress syndrome (e.g. nitric oxide, prone position, surfactant, glucocorticoids). Although some investigations have shown promising improvements in oxygenation and physiological variables, large randomized trials of adjunctive and supportive therapies showed no impact on survival.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. The value of respiratory variables as weaning predictors in the intensive care unit (ICU) is controversial. We evaluated the ability of tidal volume (Vtexp), respiratory rate ( f ), minute volume (MVexp), rapid shallow breathing index ( f/Vt), inspired–expired oxygen concentration difference [(I–E)O2], and end-tidal carbon dioxide concentration (PE′CO2) at the end of a weaning trial to predict early weaning outcomes. Methods. Seventy-three patients who required .24 h of mechanical ventilation were studied. A controlled pressure support weaning trial was undertaken until 5 cm H2O continuous positive airway pressure or predefined criteria were reached. The ability of data from the last 5 min of the trial to predict whether a predefined endpoint indicating discontinuation of ventilator support within the next 24 h was evaluated. Results. Pre-test probability for achieving the outcome was 44% in the cohort (n¼32). Non-achievers were older, had higher APACHE II and organ failure scores before the trial, and higher baseline arterial H+ concentrations. The Vt, MV, f, and f/Vt had no predictive power using a range of cut-off values or from receiver operating characteristic (ROC) analysis. The [I–E]O2 and PE′CO2 had weak discriminatory power [areaunder the ROC curve: [I–E]O2 0.64 (P¼0.03); PE′CO2 0.63 (P¼0.05)]. Using best cut-off values for [I–E]O2 of 5.6% and PE′CO2 of 5.1 kPa, positive and negative likelihood ratios were 2 and 0.5, respectively, which only changed the pre- to post-test probability by about 20%. Conclusions. In unselected ICU patients, respiratory variables predict early weaning from mechanical ventilation poorly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actions Towards Sustainable Outcomes Environmental Issues/Principal Impacts The increasing urbanisation of cities brings with it several detrimental consequences, such as: • Significant energy use for heating and cooling many more buildings has led to urban heat islands and increased greenhouse gas emissions. • Increased amount of hard surfaces, which not only contributes to higher temperatures in cities, but also to increased stormwater runoff. • Degraded air quality and noise. • Health and general well-being of people is frequently compromised, by inadequate indoor air quality. • Reduced urban biodiversity. Basic Strategies In many design situations, boundaries and constraints limit the application of cutting EDGe actions. In these circumstances, designers should at least consider the following: • Living walls are an emerging technology, and many Australian examples function more as internal feature walls. However,as understanding of the benefits and construction of living walls develops this technology could be part of an exterior facade that enhances a building’s thermal performance. • Living walls should be designed to function with an irrigation system using non-potable water. Cutting EDGe Strategies • Living walls can be part of a design strategy that effectively improves the thermal performance of a building, thereby contributing to lower energy use and greenhouse gas emissions. • Including living walls in the initial stages of design would provide greater flexibility to the design, especially of the facade, structural supports, mechanical ventilation and watering systems, thus lowering costs. • Designing a building with an early understanding of living walls can greatly reduce maintenance costs. • Including plant species and planting media that would be able to remove air impurities could contribute to improved indoor air quality, workplace productivity and well-being. Synergies and References • Living walls are a key research topic at the Centre for Subtropical Design, Queensland University of Technology: http://www.subtropicaldesign.bee.qut.edu.au • BEDP Environment Design Guide: DES 53: Roof and Facade Gardens • BEDP Environment Design Guide: GEN 4: Positive Development – Designing for Net Positive Impacts (see green scaffolding and green space frame walls). • Green Roofs Australia: www.greenroofs.wordpress.com • Green Roofs for Healthy Cities USA: www.greenroofs.org

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The care of the mechanically ventilated patient is at the core of a nurse's clinical practice in the Intensive Care Unit (ICU). Published work relating to the numerous nursing issues of the care of the mechanically ventilated patient in the ICU is growing significantly. Literature focuses on patient assessment and management strategies for patient stressors, pain and sedation. Yet this literature is fragmentary by nature. The purpose of this paper is to provide a single comprehensive examination of the evidence related to the care of the mechanically ventilated patient. In part one of this two-part paper, the evidence on nursing care of the mechanically ventilated patient is explored with specific focus on patient safety: particularly patient and equipment assessment. Part two of the paper examines the evidence related to the mechanically ventilated patient's comfort, the patient/family unit, patient position, hygiene, management of stressors, pain management and sedation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The care of the mechanically ventilated patient is a fundamental component of a nurse's clinical practice in the intensive care unit (ICU). Published work relating to the numerous nursing issues of the care of the mechanically ventilated patient in the ICU is growing significantly, yet is fragmentary by nature. The purpose of this paper is to provide a single comprehensive examination of the evidence related to the care of the mechanically ventilated patient. In part one of this two-part paper, the evidence on nursing care of the mechanically ventilated patient was explored with specific focus on patient safety: particularly patient and equipment assessment. This article, part two, examines the evidence related to the mechanically ventilated patient's comfort: patient position, hygiene, management of stressors (such as communication, sleep disturbance and isolation), pain management and sedation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution-PNSD and PM 2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM 2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM 2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM 2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics. © 2012 Author(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mortality and cost outcomes of elderly intensive care unit (ICU) trauma patients were characterised in a retrospective cohort study from an Australian tertiary ICU. Trauma patients admitted between January 2000 and December 2005 were grouped into three major age categories: aged ≥65 years admitted into ICU (n=272); aged ≥65 years admitted into general ward (n=610) and aged <65 years admitted into ICU (n=1617). Hospital mortality predictors were characterised as odds ratios (OR) using logistic regression. The impact of predictor variables on (log) total hospital-stay costs was determined using least squares regression. An alternate treatment-effects regression model estimated the mortality cost-effect as an endogenous variable. Mortality predictors (P ≤0.0001, comparator: ICU ≥65 years, ventilated) were: ICU <65 not-ventilated (OR 0.014); ICU <65 ventilated (OR 0.090); ICU age ≥65 not-ventilated (OR 0.061) and ward ≥65 (OR 0.086); increasing injury severity score and increased Charlson comorbidity index of 1 and 2, compared with zero (OR 2.21 [1.40 to 3.48] and OR 2.57 [1.45 to 4.55]). The raw mean daily ICU and hospital costs in A$ 2005 (US$) for age <65 and ≥65 to ICU, and ≥65 to the ward were; for year 2000: ICU, $2717 (1462) and $2777 (1494); hospital, $1837 (988) and $1590 (855); ward $933 (502); for year 2005: ICU, $3202 (2393) and $3086 (2307); hospital, $1938 (1449) and $1914 (1431); ward $1180 (882). Cost increments were predicted by age ≥65 and ICU admission, increasing injury severity score, mechanical ventilation, Charlson comorbidity index increments and hospital survival. Mortalitycost-effect was estimated at -63% by least squares regression and -82% by treatment-effects regression model. Patient demographic factors, injury severity and its consequences predict both cost and survival in trauma. The cost mortality effect was biased upwards by conventional least squares regression estimation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background:  Tradition has led us to believe that a heavily sedated patient is a comfortable, settled, compliant patient for whom sedation will improve outcome. The current move witnessed in clinical practice today of limiting sedation has led health care in recent years to question the benefit and necessity of routine, continuous sedation for all patients requiring mechanical ventilation. However, as a result there has been a rise in the amount of agitation being reported as being experienced by patients with the daily withdrawal of sedation. Aims:  The purpose of this paper is to review current arguments for and against perserving with agitation versus re-sedating, when it presents during the daily sedation breaks. Findings:  Of the literature reviewed, the question to re-sedate the mechanically ventilated agitated patient during sedation breaks remains an issue of contention. Although there is evidence focusing on the psychological effects of long-term sedation and sedation breaks specifically, the complex nature of critical illness in some cases means that individualized care is of paramount importance and in-depth assessment is crucial when deciding to re-sedate in the face of undetermined agitation. Agitation has been closely linked with several incidents that can be detrimental to patient safety, such as removal of lines and unplanned self-extubation. Conclusion:  The recommendations of this review are that nurses should re-commence sedation if the patient becomes agitated following a sedation break. Aims:  The purpose of this paper is to review current arguments for and against perserving with agitation versus re-sedating, when it presents during the daily sedation breaks. Findings:  Of the literature reviewed, the question to re-sedate the mechanically ventilated agitated patient during sedation breaks remains an issue of contention. Although there is evidence focusing on the psychological effects of long-term sedation and sedation breaks specifically, the complex nature of critical illness in some cases means that individualized care is of paramount importance and in-depth assessment is crucial when deciding to re-sedate in the face of undetermined agitation. Agitation has been closely linked with several incidents that can be detrimental to patient safety, such as removal of lines and unplanned self-extubation. Conclusion:  The recommendations of this review are that nurses should re-commence sedation if the patient becomes agitated following a sedation break.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emphysema is caused by exposure to cigarette smoking as well as alpha1-antitrypsin deficiency. It has been estimated to cost the National Health Service (NHS) in excess of £800 million per year in related health care costs. The challenges for Critical Care nurses are those associated with dynamic hyperinflation, Auto-PEEP, malnutrition and the weaning from invasive and non-invasive mechanical ventilation. In this paper we consider the impact of the pathophysiology of emphysema, its effects on other body systems as well as the impact acute exacerbations have when patients are admitted to the Intensive Care Unit.