945 resultados para Mean-Periodic Function
Resumo:
We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed, and the system is subjected to periodic delta-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.
Resumo:
Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high-throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 mu s coarse-grained (CG) molecular dynamics trajectories were used to compute normalized root-mean-square-fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three-dimensional autocorrelation vectors. Our in-house custom-built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics-signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof-of-principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom-made CG FF, useful to all. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.
Resumo:
In this article, we look at the political business cycle problem through the lens of uncertainty. The feedback control used by us is the famous NKPC with stochasticity and wage rigidities. We extend the New Keynesian Phillips Curve model to the continuous time stochastic set up with an Ornstein-Uhlenbeck process. We minimize relevant expected quadratic cost by solving the corresponding Hamilton-Jacobi-Bellman equation. The basic intuition of the classical model is qualitatively carried forward in our set up but uncertainty also plays an important role in determining the optimal trajectory of the voter support function. The internal variability of the system acts as a base shifter for the support function in the risk neutral case. The role of uncertainty is even more prominent in the risk averse case where all the shape parameters are directly dependent on variability. Thus, in this case variability controls both the rates of change as well as the base shift parameters. To gain more insight we have also studied the model when the coefficients are time invariant and studied numerical solutions. The close relationship between the unemployment rate and the support function for the incumbent party is highlighted. The role of uncertainty in creating sampling fluctuation in this set up, possibly towards apparently anomalous results, is also explored.
Resumo:
Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.
Resumo:
The thermal conductivity of periodic composite media with spherical inclusions embedded in a homogeneous matrix is discussed. Using Green's function, we show that the Rayleigh identity can be generalized to deal with the thermal properties of these systems. A technique for calculating effective thermal conductivities is proposed. Systems with cubic symmetries (including simple cubic, body centered cubic and face centered cubic symmetry) are investigated in detail, and useful formulae for evaluating effective thermal conductivities are derived.
Resumo:
15 p.
Resumo:
Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.
Resumo:
Understanding how transcriptional regulatory sequence maps to regulatory function remains a difficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter region, we would like to be able to say which transcription factors bind there, how strongly they bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objective of integrating knowledge of these parameters into a prediction of gene expression levels. The theoretical framework of statistical thermodynamics provides a useful framework for doing so, enabling us to predict how gene expression levels depend on transcription factor binding energies and concentrations. We used thermodynamic models, coupled with models of the sequence-dependent binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for the level of repression exhibited by the lac promoter, and tested it experimentally using a set of promoter variants from E. coli strains isolated from different natural environments. For this work, we sought to ``reverse engineer'' naturally occurring promoter sequences to understand how variations in promoter sequence affects gene expression. The natural inverse of this approach is to ``forward engineer'' promoter sequences to obtain targeted levels of gene expression. We used a high precision model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model relating binding energy to gene expression, to predictively design and verify a suite of synthetic E. coli promoters whose expression varied over nearly three orders of magnitude.
However, although thermodynamic models enable predictions of mean levels of gene expression, it has become evident that cell-to-cell variability or ``noise'' in gene expression can also play a biologically important role. In order to address this aspect of gene regulation, we developed models based on the chemical master equation framework and used them to explore the noise properties of a number of common E. coli regulatory motifs; these properties included the dependence of the noise on parameters such as transcription factor binding strength and copy number. We then performed experiments in which these parameters were systematically varied and measured the level of variability using mRNA FISH. The results showed a clear dependence of the noise on these parameters, in accord with model predictions.
Finally, one shortcoming of the preceding modeling frameworks is that their applicability is largely limited to systems that are already well-characterized, such as the lac promoter. Motivated by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel of large conductance (MscL). We identified several candidate transcription factor binding sites, and work is continuing to identify the associated proteins.
Resumo:
A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.
We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.
We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.
Resumo:
New exact solutions of the (2 + 1)-dimensional double sine-Gordon equation are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon system and double sine-Gordon equation. Two arbitrary functions are included into the Jacobi elliptic function solutions. New doubly periodic wave solutions are obtained and displayed graphically by proper selections of the arbitrary functions.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Streamflow values show definite seasonal patterns in their month-to-month correlation structure. The structure also seems to vary as a function of the type of stream (coastal versus mountain or humid versus arid region). The standard autoregressive moving average (ARMA) time series model is incapable of reproducing this correlation structure. ... A periodic ARMA time series model is one in which an ARMA model is fitted to each month or season but the parameters of the model are constrained to be periodic according to a Fourier series. This constraint greatly reduces the number of parameters but still leaves the flexibility for matching the seasonally varying correlograms.
Resumo:
The Lighthill theory is extended so that it may be used to determine the flow noise induced by a turbulent boundary layer over a plane homogeneous flexible surface. The influence of the surface properties and the mean flow on the sound generation is brought out explicitly through the use of a Green function. The form of the low-wavenumber wall-pressure spectrum on a rigid surface with an arbitrary mean flow profile is determined. The effect of a coating layer is investigated.
Resumo:
An analysis of the factor-product relationship in the semi-intensive shrimp farming system of Kerala, farm basis and hectare basis, we are attempted and the results reported in this paper. The Cobb-Douglas model, in which the physical relationship between input and output is estimated, and the marginal analysis then employed to evaluate the producer behaviour, was used for the analysis. The study was based on empirical data collected during November 1994 to May 1996, covering three seasons, from 21 farms spread over Alappuzha, Ernakulam and Kasaragod districts of the state. The sample covered a total area of 61.06 ha. Of the 11 explanatory variables considered in the model, the size of the farm, casual labour and chemical fertilizers were found statistically significant. It was also observed that the factors such as age of pond, experience of the farmer, feed, miscellaneous costs, number of seed stocked and skilled labour contributed positively to the output. The estimated industry production function exhibited unitary economies of scale. The estimated mean output was 3937 kg/ha. The test of multi-co-linearity showed that there is no problem of dominant variable. On the basis of the marginal product and the given input-output prices, the optimum amounts of seed, feed and casual labour were estimated. They were about 97139 seed, 959 kg of feed and 585 man-days of casual labour per farm. This indicated the need for reducing the stocking density and amount of feed from the present levels, in order to maximise profit. Based on the finding of the study, suggestions for improving the industry production function are proposed.
Resumo:
Multiwalled carbon nanotubes display dielectric properties similar to those of graphite, which can be calculated using the well known Drude-Lorentz model. However, most computational softwares lack the capacity to directly incorporate this model into the simulations. We present the finite element modeling of optical propagation through periodic arrays of multiwalled carbon nanotubes. The dielectric function of nanotubes was incorporated into the model by using polynomial curve fitting technique. The computational analysis revealed interesting metamaterial filtering effects displayed by the highly dense square lattice arrays of carbon nanotubes, having lattice constants of the order few hundred nanometers. The curve fitting results for the dielectric function can also be used for simulating other interesting optical applications based on nanotube arrays.