945 resultados para Maximum likelihood estimate


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator outperforms the classical estimators in almost all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To measure prevalence and model incidence of HIV infection. Setting: 2013 consecutive pregnant women attending public sector antenatal clinics in 1997 in Hlabisa health district, South Africa. Historical seroprevalence data, 1992-1995. Methods: Serum remaining from syphilis testing was tested anonymously for antibodies to HIV to determine seroprevalence. Two models, allowing for differential mortality between HIV-positive and HIV-negative people, were used. The first used serial seroprevalence data to estimate trends in annual incidence. The second, a maximum likelihood model, took account of changing force of infection and age-dependent risk of infection, to estimate age-specific HIV incidence in 1997. Multiple logistic regression provided adjusted odds ratios (OR) for risk factors for prevalent HIV infection. Results: Estimated annual HIV incidence increased from 4% in 1992/1993 to 10% in 1996/1997. In 1997, highest age-specific incidence was 16% among women aged between 20 and 24 years. in 1997, overall prevalence was 26% (95% confidence interval [CI], 24%-28%) and at 34% was highest among women aged between 20 and 24 years. Young age (<30 years; odds ratio [OR], 2.1; p = .001), unmarried status (OR 2.2; p = .001) and living in less remote parts of the district (OR 1.5; p = .002) were associated with HIV prevalence in univariate analysis. Associations were less strong in multivariate analysis. Partner's migration status was not associated with HIV infection. Substantial heterogeneity of HIV prevalence by clinic was observed (range 17%-31%; test for trend, p = .001). Conclusions: This community is experiencing an explosive HIV epidemic. Young, single women in the more developed parts of the district would form an appropriate cohort to test, and benefit from, interventions such as vaginal microbicides and HIV vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Records of 18,770 Nelore animals, born from 1975 to 2002, in 8 herds participating in the Nelore Cattle Breeding Program, were analyzed to estimate genetic parameters for mature BW. The mature BW were analyzed as a single BW taken closest to 4.5 yr of age for each cow in the data file, considering BW starting from 2 (W2Y_S), 3 (W3Y_S), or 4 (W4Y_S) yr of age or as repeated records, including all BW starting from 2 (W2Y_R), 3 (W3Y_R), or 4 (W4Y_R) yr of age. The variance components were estimated by restricted maximum likelihood, fitting univariate and bivariate animal models, including weaning weight. The heritability estimates were 0.29, 0.34, 0.36, 0.41, 0.44, and 0.46 for W2Y_S, W3Y_S, W4Y_S, W2Y_R, W3Y_R, and W4Y_R, respectively. The repeatability estimates for W2Y_R, W3Y_R, and W4Y_R were 0.59, 0.64, and 0.72, respectively. Larger accuracy values associated with the EBV were obtained in the repeated records models. The results indicated the bivariate repeated records model as the most appropriate for analyzing mature BW.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although dogs are considered to be the principal transmitter of rabies in Brazil, dog rabies had never been recorded in South America before European colonization. In order to investigate the evolutionary history of dog rabies virus (RABV) in Brazil, we performed a phylogenetic analysis of carnivore RABV isolates from around the world and estimated the divergence times for dog RABV in Brazil. Our estimate for the time of introduction of dog RABV into Brazil was the late-19th to early-20th century, which was later than the colonization period but corresponded to a period of increased immigration from Europe to Brazil. In addition, dog RABVs appeared to have spread to indigenous animals in Brazil during the latter half of the 20th century, when the development and urbanization of Brazil occurred. These results suggest that the movement of rabid dogs, along with human activities since the 19th century, promoted the introduction and expansion of dog RABV in Brazil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Several studies have shown that variation in serum gamma-glutamyltransferase (GGT) in the population is associated with risk of death or development of cardiovascular disease, type 2 diabetes, stroke, or hypertension. This association is only partly explained by associations between GGT and recognized risk factors. Our aim was to estimate the relative importance of genetic and environmental sources of variation in GGT as well as genetic and environmental sources of covariation between GGT and other liver enzymes and markers of cardiovascular risk in adult twin pairs. Methods: We recruited 1134 men and 2241 women through the Australian Twin Registry. Data were collected through mailed questionnaires, telephone interviews, and by analysis of blood samples. Sources of variation in GGT, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) and of covariation between GGT and cardiovascular risk factors were assessed by maximum-likelihood model-fitting. Results: Serum GGT, ALT, and AST were affected by additive genetic and nonshared environmental factors, with heritabilities estimated at 0.52, 0.48, and 0.32, respectively. One-half of the genetic variance in GGT was shared with ALT, AST, or both. There were highly significant correlations between GGT and body mass index; serum lipids, lipoproteins, glucose, and insulin; and blood pressure. These correlations were more attributable to genes that affect both GGT and known cardiovascular risk factors than to environmental factors. Conclusions: Variation in serum enzymes that reflect liver function showed significant genetic effects, and there was evidence that both genetic and environmental factors that affect these enzymes can also affect cardiovascular risk. (C) 2002 American Association for Clinical Chemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: To compare the population modelling programs NONMEM and P-PHARM during investigation of the pharmacokinetics of tacrolimus in paediatric liver-transplant recipients. Methods: Population pharmacokinetic analysis was performed using NONMEM and P-PHARM on retrospective data from 35 paediatric liver-transplant patients receiving tacrolimus therapy. The same data were presented to both programs. Maximum likelihood estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F). Covariates screened for influence on these parameters were weight, age, gender, post-operative day, days of tacrolimus therapy, transplant type, biliary reconstructive procedure, liver function tests, creatinine clearance, haematocrit, corticosteroid dose, and potential interacting drugs. Results: A satisfactory model was developed in both programs with a single categorical covariate - transplant type - providing stable parameter estimates and small, normally distributed (weighted) residuals. In NONMEM, the continuous covariates - age and liver function tests - improved modelling further. Mean parameter estimates were CL/F (whole liver) = 16.3 1/h, CL/F (cut-down liver) = 8.5 1/h and V/F = 565 1 in NONMEM, and CL/F = 8.3 1/h and V/F = 155 1 in P-PHARM. Individual Bayesian parameter estimates were CL/F (whole liver) = 17.9 +/- 8.8 1/h, CL/F (cutdown liver) = 11.6 +/- 18.8 1/h and V/F = 712 792 1 in NONMEM, and CL/F (whole liver) = 12.8 +/- 3.5 1/h, CL/F (cut-down liver) = 8.2 +/- 3.4 1/h and V/F = 221 1641 in P-PHARM. Marked interindividual kinetic variability (38-108%) and residual random error (approximately 3 ng/ml) were observed. P-PHARM was more user friendly and readily provided informative graphical presentation of results. NONMEM allowed a wider choice of errors for statistical modelling and coped better with complex covariate data sets. Conclusion: Results from parametric modelling programs can vary due to different algorithms employed to estimate parameters, alternative methods of covariate analysis and variations and limitations in the software itself.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-environment trials (METs) used to evaluate breeding lines vary in the number of years that they sample. We used a cropping systems model to simulate the target population of environments (TPE) for 6 locations over 108 years for 54 'near-isolines' of sorghum in north-eastern Australia. For a single reference genotype, each of 547 trials was clustered into 1 of 3 'drought environment types' (DETs) based on a seasonal water stress index. Within sequential METs of 2 years duration, the frequencies of these drought patterns often differed substantially from those derived for the entire TPE. This was reflected in variation in the mean yield of the reference genotype. For the TPE and for 2-year METs, restricted maximum likelihood methods were used to estimate components of genotypic and genotype by environment variance. These also varied substantially, although not in direct correlation with frequency of occurrence of different DETs over a 2-year period. Combined analysis over different numbers of seasons demonstrated the expected improvement in the correlation between MET estimates of genotype performance and the overall genotype averages as the number of seasons in the MET was increased.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is considerable variation in the level of fecal egg excretion during Schistosoma mansoni infections. Within a single endemic area, the distribution of egg counts is typically overdispersed, with the majority of eggs excreted coming from a minority of residents. The purpose of this study was to quantify the influence of genetic factors on patterns of fecal egg excretion in a rural study sample in Brazil. Individual fecal egg excretions, expressed in eggs per gram of feces, were determined by the Kato-Katz method on stool samples collected on three different days. Detailed genealogic information was gathered at the time of sampling, which allowed assignment of 461 individuals to 14 pedigrees containing between 3 and 422 individuals. Using a maximum likelihood variance decomposition approach, we performed quantitative genetic analyses to determine if genetic factors could partially account for the observed pattern of fecal egg excretion. The quantitative genetic analysis indicated that between 21-37% of the variation in S. mansoni egg counts was attributable to additive genetic factors and that shared environment, as assessed by common household, accounted for a further 12-21% of the observed variation. A maximum likelihood heritability (h²) estimate of 0.44 ± 0.14 (mean ± SE) was found for the 9,604 second- and higher-degree pairwise relationships in the study sample, which is consistent with the upper limit (37%) of the genetic factor determined in the variance decomposition analysis. These analyses point to the significant influence of additive host genes on the pattern of S. mansoni fecal egg excretion in this endemic area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a maximum likelihood method using historical weather data to estimate a parametric model of daily precipitation and maximum and minimum air temperatures. Parameter estimates are reported for Brookings, SD, and Boone, IA, to illustrate the procedure. The use of this parametric model to generate stochastic time series of daily weather is then summarized. A soil temperature model is described that determines daily average, maximum, and minimum soil temperatures based on air temperatures and precipitation, following a lagged process due to soil heat storage and other factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The antiretroviral protein TRIM5alpha is known to have evolved different restriction capacities against various retroviruses, driven by positive Darwinian selection. However, how these different specificities have evolved in the primate lineages is not fully understood. Here we used ancestral protein resurrection to estimate the evolution of antiviral restriction specificities of TRIM5alpha on the primate lineage leading to humans. We used TRIM5alpha coding sequences from 24 primates for the reconstruction of ancestral TRIM5alpha sequences using maximum-likelihood and Bayesian approaches. Ancestral sequences were transduced into HeLa and CRFK cells. Stable cell lines were generated and used to test restriction of a panel of extant retroviruses (human immunodeficiency virus type 1 [HIV-1] and HIV-2, simian immunodeficiency virus [SIV] variants SIV(mac) and SIV(agm), and murine leukemia virus [MLV] variants N-MLV and B-MLV). The resurrected TRIM5alpha variant from the common ancestor of Old World primates (Old World monkeys and apes, approximately 25 million years before present) was effective against present day HIV-1. In contrast to the HIV-1 restriction pattern, we show that the restriction efficacy against other retroviruses, such as a murine oncoretrovirus (N-MLV), is higher for more recent resurrected hominoid variants. Ancestral TRIM5alpha variants have generally limited efficacy against HIV-2, SIV(agm), and SIV(mac). Our study sheds new light on the evolution of the intrinsic antiviral defense machinery and illustrates the utility of functional evolutionary reconstruction for characterizing recently emerged protein differences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonlinear regression problems can often be reduced to linearity by transforming the response variable (e.g., using the Box-Cox family of transformations). The classic estimates of the parameter defining the transformation as well as of the regression coefficients are based on the maximum likelihood criterion, assuming homoscedastic normal errors for the transformed response. These estimates are nonrobust in the presence of outliers and can be inconsistent when the errors are nonnormal or heteroscedastic. This article proposes new robust estimates that are consistent and asymptotically normal for any unimodal and homoscedastic error distribution. For this purpose, a robust version of conditional expectation is introduced for which the prediction mean squared error is replaced with an M scale. This concept is then used to develop a nonparametric criterion to estimate the transformation parameter as well as the regression coefficients. A finite sample estimate of this criterion based on a robust version of smearing is also proposed. Monte Carlo experiments show that the new estimates compare favorably with respect to the available competitors.