1000 resultados para Matrices (Matemáticas)
Resumo:
The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.
Resumo:
En este trabajo estudiamos las mejoras introducidas en los Grupos de Estudios de Intensificación (grupos GEI) durante el curso académico 2012-2013. La introducción de estos grupos ha sido una apuesta de la Facultat d"Economia i Empresa de la Universitat de Barcelona con el objetivo de facilitar al estudiante el seguimiento de las asignaturas que repite, teniendo en cuenta el perfil de este alumnado, y ofrecerle una vía atractiva que le facilite el seguimiento y superación de la materia, así como su compaginación con las otras asignaturas de primera matrícula. Tras un primer año de implantación en el curso académico 2011-2012, se redefinió el diseño de estos grupos con el objetivo de corregir las ineficiencias observadas. Estudiamos así, para la asignatura de Matemáticas I del grado de Economía, cómo estos cambios han incidido en el seguimiento y rendimiento, comparando los resultados con los obtenidos durante el pasado curso académico.
Resumo:
The least square method is analyzed. The basic aspects of the method are discussed. Emphasis is given in procedures that allow a simple memorization of the basic equations associated with the linear and non linear least square method, polinomial regression and multilinear method.
Resumo:
In this study we analize the application of the reflective learning during initial formation mathematics teachers. This model is based on the sociocultural theories of the human learning and assumes that the interaction and the contrast make possible the coconstruction and the active reconstruction of knowledge.In order to make the study, it was left from a sample of 29 teaching students. The qualitative analysis allowed to identify factors that facilitate the incorporation of the reflective learning in university teaching, as well as the degree of effectiveness of this model to learn to teach mathematics
Resumo:
Cuando se habla de matemática y realidad, frecuentemente se asocia con una matemática centrada en hechos y situaciones de la vida diaria. Dicha interpretación nos dirige a una determinada concepción que, aunque tiene como referente la realidad o aspectos de ésta, no siempre la forma de integrar estarealidad en la escuela o el aula resulta ser la correcta.La escuela tiene la ineludible obligación deprocurar formar personas felices, y por ello debe procurar que las personas logren integrarse y conozcan su realidad y entorno
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.
Resumo:
A method for determining copper by solid phase spectrophotometry (SPS) was optimized using the Doehlert design. Copper(II) was sorbed on a styrene-divinylbenzene anion-exchange resin as a Cu(II)-1-(2-pyridylazo)-2-naphthol (PAN) complex, at pH 7.0. Resin phase absorbances at 560 and 800 nm were measured directly. The detection limit was found to be 2.5 µg L-1. The relative standard deviation on ten replicate determinations of 10 µg Cu(II) in 1000 mL samples was 1.1%. The linear range of the determination was 5.0-100 µg L-1. The method was applied successfully to the determination of Cu(II) in natural water and vegetable samples.
Resumo:
En este estudio se evalúa la adecuación de un protocolo para la enseñanza delconcepto de poliedro regular, destinado a alumnos de 14 y 15 años. Este protocolo se ha diseñado desde una perspectiva sociocultural y su evaluación se basa en la aplicación de los criterios deidoneidad didáctica que ofrece el enfoque ontosemiótico. La idoneidad se estudia con la revisión de sus diferentes dimensiones: matemática, cognitiva, interaccional, mediacional, emocional y ecológica. El análisis ha permitido detectar algunos factores que favorecen la validez del protocolo y la adecuación para su empleo en el aula, como el tipo de discurso, el uso de material manipulable o el trabajo cooperativo
Resumo:
Este artículo trata de la aplicación de las competencias básicas en el currículum de Educación Primaria. El objetivo que persigue es ofrecer algunas estrategias para ayudar a los maestros a integrar las competencias básicas en los métodos de programación y evaluación. Con este fin, y para prever las posibles dificultades en la implementación de las competencias básicas, en la primera parte del artículo se analiza la situación actual a partir de la lectura de diversos documentos legales vigentes. A continuación, en la segunda parte del artículo se aportan algunas herramientas para facilitar esta integración desde las áreas de lengua y de matemáticas. Realizamos esta aproximación desde la didáctica de la lengua y de las matemáticas por su carácter instrumental para la adquisición de otros conocimientos
Resumo:
This paper stresses the importance of developing mathematical thought in young children based on everyday contexts, since these are meaningful learning situations with an interdisciplinary, globalised focus. The first part sets out the framework of reference that lays the theoretical foundations for these kinds of educational practices. The second part gives some teaching orientations for work based on everyday contexts. It concludes with the presentation of the activity 'We’re off to the cinema to learn mathematics!'
Resumo:
In this article we try to look at the learning of mathematics through games in the first years of schooling. The use of game resources in the class should not be carried out in a uniquely intuitive way but rather in a manner that contains some preliminary reflections such as, what do we understand by games? Why use games as a resource in the Mathematics classroom? And what does its use imply?
Resumo:
The results obtained in several yield tests, at an international level (mainly the famous PISA 2003 report, by the OCDE), have raised a multiplicity of performances in order to improve the students' yield regarding problem solving. In this article we set a clear guideline on how problems should be used in Mathematics lessons, not for obtaining better scores in the yield tests but for improving the development of Mathematical thinking in students. From this perspective, the author analyses, through eight reflections, how the concept of problem, transmitted both in the school and from society, influences the students
Resumo:
Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.
Resumo:
In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.