962 resultados para Massive spin-2
Resumo:
Results of systematic tunable-frequency ESR studies of the spin dynamics in NiCl2-4SC(NH2)(2) (known as DTN), a gapped S = 1 chain system with easy-plane anisotropy dominating over the exchange coupling (large-D chain), are presented. We have obtained direct evidence for two-magnon bound states, predicted for S = 1 large-D spin chains in the fully spin-polarized (FSP) phase. The frequency-field dependence of the corresponding excitations was calculated using the set of parameters obtained earlier [S.A. Zvyagin, et al., Phys. Rev. Lett. 98 (2007) 047205]. Very good agreement between the calculations and the experiment was obtained. It is argued that the observation of transitions from the ground to two-magnon bound states might indicate a more complex picture of magnetic interactions in DTN, involving a finite in-plane anisotropy. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work reports on magnetic measurements of the quasi-two-dimensional (quasi-2D) system Zn(1-x)Mn(x)In(2)Se(4), with 0.01 <= x <= 1.00. For x > 0.67, the quasi-2D system seems to develop a spin-glass behaviour. Evidence of a true phase transition phenomenon is provided by the steep increase of the nonlinear susceptibility chi(nl) when approaching T(C) from above. The static scaling of chi(nl) data yields critical exponents delta = 4.0 +/- 0.2, phi = 4.37 +/- 0.17 and TC = 3.4 +/- 0.1 K for the sample with x = 1.00 and similar values for the sample with x = 0.87. These critical exponents are in good agreement with values reported for other spin-glass systems with short-range interactions.
Resumo:
In this work we applied a quantum circuit treatment to describe the nuclear spin relaxation. From the Redfield theory, we obtain a description of the quadrupolar relaxation as a computational process in a spin 3/2 system, through a model in which the environment is comprised by five qubits and three different quantum noise channels. The interaction between the environment and the spin 3/2 nuclei is described by a quantum circuit fully compatible with the Redfield theory of relaxation. Theoretical predictions are compared to experimental data, a short review of quantum channels and relaxation in NMR qubits is also present.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Photon propagation is non-dispersive within the context of semiclassical general relativity. What about the remaining massless particles? It can be shown that at the tree level the scattering of massless particles of spin 0, 1/2, 1 or whatever by a static gravitational field generated by a localized source such as the Sun, treated as an external field, is non-dispersive as well. It is amazing, however, that massive particles, regardless of whether they have integral or half-integral spin, experience an energy-dependent gravitational deflection. Therefore, semiclassical general relativity and gravitational rainbows of massive particles can coexist without conflict. We address this issue in this essay.
Resumo:
We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and tau-reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variables lambda(alpha) show that the particle states have fractional statistics and spin. At once we introduce a possible massive term for the non-interacting model.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
We solve the spectrum of the closed Temperley-Lieb quantum spin chains using the coordinate Bethe ansatz. These models are invariant under the quantum group U-q[sl(2)].
Resumo:
In this paper, we evaluate the correlation functions of the spin-1/2 XYZ model for some particular cases by using the Mori continued-fraction formalism. The results are exactly the same as those well-known ones. This removes any doubt about the convergence of the continued fraction recently raised by some authors.
Resumo:
The Green function for a spin-1/2 charged particle in the presence of an external plane wave electromagnetic field is calculated by algebraic techniques in terms of the free-particle Green function.
Resumo:
The stable free radical 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) is the only spin labeled amino acid that has been used to date to successfully label peptide sequences for structural studies. However, severe difficulty in coupling the subsequent amino acid has been the most serious shortcoming of this paramagnetic marker. This problem stems from the low nucleophilicity of TOAC's amine group towards the acylation reaction during peptide chain elongation. The present report introduces the alternative beta -amino acid 2,2,5,5-tetramethylpyrrolidine-N-oxyl-3-amino-4-carboxylic acid (POAC), potentially useful in peptide and protein chemistry. Investigations aimed at addressing the stereochemistry of this cyclic molecule through X-ray diffraction measurements of crystalline and bulk samples revealed that it consists only of the trans conformer. The 9-fluorenylmethyloxyearbonyl group (Fmoc) was chosen for temporary protection of the POAC amine function, allowing insertion of the probe at any position in a peptide sequence. The vasoactive octapeptide angiotensin II (AII, DRVYIHPF) was synthesized by replacing Pro(7) with POAC. The reaction of Fmoc-POAC with the peptidyl-resin occurred smoothly, and the coupling of the subsequent amino acid showed a much faster reaction when compared with TOAC. POAC(7)-AII was obtained in good yield, demonstrating that, in addition to TOAC, POAC is a convenient amino acid for the synthesis of spin labeled peptide analogues. The present findings open the possibility of a wide range of chemical and biological applications for this novel beta -amino acid derivative, including structural investigations involving its differentiated bend-inducing characteristics.
Resumo:
We consider effective interactions among excited spin-1/2 and spin-3/2 leptons with the usual ones. Assuming that these new leptons are lighter than the Z0, we study the constraints on their masses and compositeness scale coming from the leptonic Z0 partial width.