937 resultados para Mass-consistent model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb(-1). We also compare the displaced vertex reaches of the LHC and Tevatron.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective We characterized the impact of the metabolic syndrome (MetS) and its components on cardiovascular adverse events in patients with symptomatic chronic multivessel coronary artery disease, which have been followed prospectively for 2 years. Methods Patients enrolled in the MASS II study were evaluated for each component of the MetS, as well as the full syndrome. Results The criteria for MetS were fulfilled in 52% of patients. The presence of MetS (P < 0.05), glucose intolerance (P=0.007), and diabetes (P=0.04) was associated with an increased mortality in our studied population. Moreover, despite a clear tendency for each of its components to increase the mortality risk, only the presence of the MetS significantly increased the risk of mortality among nondiabetic study participants in a multivariate model (P=0.03, relative risk 3.5, 95% confidence interval 1.1-6). Finally, MetS was still associated with increased mortality even after adjustment for diabetes status. These results indicate a strong and consistent relationship of the MetS with mortality in patients with stable coronary artery disease. Conclusion Although glucose homeostasis seems to be the major force driving the increased risk of MetS, the operational diagnosis of MetS still has information for stratifying patients when diabetes information is taken into account.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prolonged muscle disuse in vertebrates can lead to a pathological change resulting in muscle wasting and a loss of muscle strength. In this paper, we review muscle disuse atrophy in the vertebrates and examine the factors that influence the magnitude of the atrophic response during extended periods of inactivity, both artificially imposed (e.g. limb immobilisation) and naturally occurring, such as the quiescence associated with dormancy (e.g. hibernation and aestivation). The severity of muscle atrophy is positively correlated with mass-specific metabolic rate, and the metabolic depression that occurs during dormancy would appear to have a protective role, reducing or preventing muscle atrophy despite periods of inactivity lasting 6-9 months. In the light of these findings, the role of reactive oxygen species and antioxidants during muscle disuse is emphasised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We classify all possible implementations of an Abelian symmetry in the two-Higgs-doublet model with fermions. We identify those symmetries which are consistent with nonvanishing quark masses and a Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM), which is not block-diagonal. Our analysis takes us from a plethora of possibilities down to 246 relevant cases, requiring only 34 distinct matrix forms. We show that applying Z(n) with n >= 4 to the scalar sector leads to a continuous U(1) symmetry in the whole Lagrangian. Finally, we address the possibilities of spontaneous CP violation and of natural suppression of the flavor-changing neutral currents. We explain why our work is relevant even for non-Abelian symmetries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h -> gamma gamma events above the Standard Model (SM) expectations, whereas no significant excess is observed in h -> ZZ* -> four lepton events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is an SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two-Higgs-doublet model, the observed gamma gamma and ZZ* -> four lepton data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of sin (beta - alpha) near unity and 0: 70 less than or similar to tan beta less than or similar to 1. An enhanced gamma gamma signal can also arise in cases where m(h) similar or equal to m(H), m(H) similar or equal to m(A), or m(h) similar or equal to m(H) similar or equal to m(A). Since the ZZ* -> 4 leptons signal derives primarily from an SM-like Higgs boson whereas the gamma gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* -> four lepton and gamma gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future. DOI: 10.1103/PhysRevD.87.055009.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, a significant increase in chronic diseases is observed. Epidemiological studies showed a consistent relationship between the consumption of fruits and vegetables and a reduced risk of certain chronic diseases, namely neurodegenerative disorders. One factor common to these diseases is oxidative stress, which is highly related with proteins, lipids, carbohydrates and nucleic acids damage, leading to cellular dysfunction. Polyphenols, highly abundant in berries and associated products, were described as having antioxidant properties, with beneficial effect in these pathologies. The aims of this study were to evaluate by proteomic analyses the effect of oxidative insult in a neuroblastoma cell line (SK-N-MC) and understand the mechanisms involved in the neuroprotective effects of digested extracts from commercial and wild blackberry (R. vagabundus Samp.). The analysis of the total proteome by two-dimensional electrophoresis revealed that oxidative stress in SK-N-MC cells resulted in altered expression of 12 protein spots from a total of 318. Regarding some redox proteomics alterations, particularly proteins carbonylation and glutathionylation, protein carbonyl alterations during stress suggest that cells produce an early and late response; on the other hand, no glutathionylated polypeptides were detected. Relatively to the incubation of SK-N-MC cells with digested berry extracts, commercial blackberry promotes more changes in protein pattern of these cells than R. vagabundus. From 9 statistically different protein spots of cells incubated with commercial blackberry, only β-tubulin and GRP 78 were until now identified by mass spectrometry. Further studies involving the selection of sub proteomes will be necessary to have a better understanding of the mechanisms underlying the neuroprotective effects of berries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.