410 resultados para Masonry.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper contributes to the understanding of lime-mortar masonry strength and deformation (which determine durability and allowable stresses/stiffness in design codes) by measuring the mechanical properties of brick bound with lime and lime-cement mortars. Based on the regression analysis of experimental results, models to estimate lime-mortar masonry compressive strength are proposed (less accurate for hydrated lime (CL90s) masonry due to the disparity between mortar and brick strengths). Also, three relationships between masonry elastic modulus and its compressive strength are proposed for cement-lime; hydraulic lime (NHL3.5 and 5); and hydrated/feebly hydraulic lime masonries respectively.

Disagreement between the experimental results and former mathematical prediction models (proposed primarily for cement masonry) is caused by a lack of provision for the significant deformation of lime masonry and the relative changes in strength and stiffness between mortar and brick over time (at 6 months and 1 year, the NHL 3.5 and 5 mortars are often stronger than the brick). Eurocode 6 provided the best predictions for the compressive strength of lime and cement-lime masonry based on the strength of their components. All models vastly overestimated the strength of CL90s masonry at 28 days however, Eurocode 6 became an accurate predictor after 6 months, when the mortar had acquired most of its final strength and stiffness.

The experimental results agreed with former stress-strain curves. It was evidenced that mortar strongly impacts masonry deformation, and that the masonry stress/strain relationship becomes increasingly non-linear as mortar strength lowers. It was also noted that, the influence of masonry stiffness on its compressive strength becomes smaller as the mortar hydraulicity increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centresshould be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slender masonry structures are distributed all over the world and constitute a relevant part of the architectural and cultural heritage of humanity. Their protection against earthquakes is a topic of great concern among the scientific community. This concern mainly arises from the strong damage or complete loss suffered by this group of structures due to catastrophic events and the need and interest to preserve them. Although the great progress in technology, and in the knowledge of seismology and earthquake engineering, the preservation of these brittle and massive structures still represents a major challenge. Based on the research developed in this work it is proposed a methodology for the seismic risk assessment of slender masonry structures. The proposed methodology was applied for the vulnerability assessment of Nepalese Pagoda temples which follow very simple construction procedure and construction detailing in relation to seismic resistance requirements. The work is divided in three main parts. Firstly, particular structural fragilities and building characteristics of the important UNESCO classified Nepalese Pagoda temples which affect their seismic performance and dynamic properties are discussed. In the second part the simplified method proposed for seismic vulnerability assessment of slender masonry structures is presented. Finally, the methodology proposed in this work is applied to study Nepalese Pagoda temples, as well as in the efficiency assessment of seismic performance improvement solution compatible with original cultural and technological value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese para obtenção do Grau de Doutor em Engenharia Civil, Especialidade Ciências da Construção

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The universal masonic library, a republication, in thirty volumes, of all the standard publications in masonry designed for the libraries of masonic bodies and inviduals…volume III embodying Preston's illustrations of masonry.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drawing by consulting engineer dated October 19, 1901. Scale is noted as 1/4 inch = 1 foot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receipt from E. Riddle and Sons, Contractors of Masonry, St. Catharines for work done, Mar. 13, 1887.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Letter to W.D. Woodruff from Langley and Rymer, Jobbers in Masonry, St. Catharines regarding tenders for the proposed lily pond. This is accompanied by an envelope. May 9, 1916.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At this era of energy crisis and resource depletion, availability of conventional materials throughout the year in quantity and quality, pose a hectic problem for the builders. Adding fuel to the fire, the demand of these materials increases day by day, since the housing and habitat requirements exponentially increase time to time. There is an international concern over this crisis and researchers are reorienting themselves, so as to evolve appropriate masonry units, using locally available cheap materials and technology. The concept of green material and construction has been well conceived in the research so that marginal materials and unskilled labour can be employed for the mass production of building blocks. In this context, considering earth as a sustainable material, there is a growing interest in the use of it, as a modern construction material. Solid waste management is one of the current major environmental concerns in our country. Our country is left with millions of cubic metre of waste plastics. One of the methods to satisfactorily address this solid waste management and the environmental issues is to suitably accommodate the waste in some form (as fibres). Their employability in block making in the form of fibres (plastic fibre- mud blocks) can be investigated through a fundamental research. Also, the review of the existing literature shows that most studies on natural fibres are focussed on cellulose based/ vegetable fibres obtained from renewable plant resources except in very few cases, where animal fibre, plastic fibre and polystyrene fabric were used. At this context, for the plastic fibre-mud blocks to be more widely applicable, a systematic quantification of the relevant physical and mechanical properties of the fibre masonry units is crucial, to enable an objective evaluation of the composite material’s response to actual field condition. This research highlights the salient observations from the detailed investigation of a systematic study on the effect of embedded fibres, made of plastic wastes on the performance of stabilised mud blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eurocode 8 representing a new generation of structural design codes in Europe defines ‎requirements for the design of buildings against earthquake action. In Central and ‎Western Europe, the newly defined earthquake zones and corresponding design ground ‎acceleration values, will lead in many cases to earthquake actions which are remarkably ‎higher than those defined so far by the design codes used until now in Central Europe. ‎ In many cases, the weak points of masonry structures during an earthquake are the corner ‎regions of the walls. Loading of masonry walls by earthquake action leads in most cases ‎to high shear forces. The corresponding bending moment in such a wall typically causes a ‎significant increase of the eccentricity of the normal force in the critical wall cross ‎section. This in turn leads ultimately to a reduction of the size of the compression zone in ‎unreinforced walls and a high concentration of normal stresses and shear stresses in the ‎corner regions. ‎ Corner-Gap-Elements, consisting of a bearing beam located underneath the wall and ‎made of a sufficiently strong material (such as reinforced concrete), reduce the effect of ‎the eccentricity of the normal force and thus restricts the pinching effect of the ‎compression zone. In fact, the deformation can be concentrated in the joint below the ‎bearing beam. According to the principles of the Capacity Design philosophy, the ‎masonry itself is protected from high stresses as a potential cause of brittle failure. ‎ Shaking table tests at the NTU Athens Earthquake Engineering Laboratory have proven ‎the effectiveness of the Corner-Gap-Element. The following presentation will cover the ‎evaluation of various experimental results as well as a numerical modeling of the ‎observed phenomena.‎