993 resultados para Marine painting, British.
Resumo:
An inexpensive Marine Environmental Recorder is described. The instrument system is small, lightweight and of low-power consumption. It is flexible, simple to operate and economical. It can be used remotely in a moored, buoyed or towed instrument system, recording measurements continuously for up to 24 h, or intermittently for 1 min every hour, for a period of up to 60 d. It has been used extensively in the Continuous Plankton Recorder and the Undulating Oceanographic Recorder to measure temperature, depth and occasionally chlorophyll and radiant energy; as a temperature recorder, it has a resolution of 0.1 Co, an uncertainty of measurement of ±0.1 Co and a stability of calibration within ±0.1 Co over a period of several months. With optional additional sensors for pitch, roll, vibration, acceleration and water-flow, the instrument system has been used to measure the performance of underwater towed vehicles and plankton samplers. The Marine Environmental Recorder is being incorporated into an instrument system in a data buoy, for automatically monitoring the marine environment in estuaries around the British Isles.
Resumo:
This project was commissioned to generate an improved understanding of the sensitivities of seagrass habitats to pressures associated with human activities in the marine environment - to provide an evidence base to facilitate and support management advice for Marine Protected Areas; development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Seagrass bed habitats are identified as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, they are also included on the OSPAR list of threatened and declining species and habitats, and are a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, in England and Wales. The purpose of this project was to produce sensitivity assessments with supporting evidence for the HPI, OSPAR and PMF seagrass/Zostera bed habitat definitions, clearly documenting the evidence behind the assessments and any differences between assessments. Nineteen pressures, falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. Assessments were based on the three British seagrasses Zostera marina, Z. noltei and Ruppia maritima. Z. marina var. angustifolia was considered to be a subspecies of Z. marina but it was specified where studies had considered it as a species in its own rights. Where possible other components of the community were investigated but the basis of the assessment focused on seagrass species. To develop each sensitivity assessment, the resistance and resilience of the key elements were assessed against the pressure benchmark using the available evidence. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Overall, seagrass beds were highly sensitive to a number of human activities: • penetration or disturbance of the substratum below the surface; • habitat structure changes – removal of substratum; • physical change to another sediment type; • physical loss of habitat; • siltation rate changes including and smothering; and • changes in suspended solids. High sensitivity was recorded for pressures which directly impacted the factors that limit seagrass growth and health such as light availability. Physical pressures that caused mechanical modification of the sediment, and hence damage to roots and leaves, also resulted in high sensitivity. Seagrass beds were assessed as ‘not sensitive’ to microbial pathogens or ‘removal of target species’. These assessments were based on the benchmarks used. Z. marina is known to be sensitive to Labyrinthula zosterae but this was not included in the benchmark used. Similarly, ‘removal of target species’ addresses only the biological effects of removal and not the physical effects of the process used. For example, seagrass beds are probably not sensitive to the removal of scallops found within the bed but are highly sensitive to the effects of dredging for scallops, as assessed under the pressure penetration or disturbance of the substratum below the surface‘. This is also an example of a synergistic effect Assessing the sensitivity of seagrass bed biotopes to pressures associated with marine activities between pressures. Where possible, synergistic effects were highlighted but synergistic and cumulative effects are outside the scope off this study. The report found that no distinct differences in sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures. These differences were determined by the species affected, the position of the habitat on the shore and the sediment type. For instance evidence showed that beds growing in soft and muddy sand were more vulnerable to physical damage than beds on harder, more compact substratum. Temporal effects can also influence the sensitivity of seagrass beds. On a seasonal time frame, physical damage to roots and leaves occurring in the reproductive season (summer months) will have a greater impact than damage in winter. On a daily basis, the tidal regime could accentuate or attenuate the effects of pressures depending on high and low tide. A variety of factors must therefore be taken into account in order to assess the sensitivity of a particular seagrass habitat at any location. No clear difference in resilience was established across the three seagrass definitions assessed in this report. The resilience of seagrass beds and the ability to recover from human induced pressures is a combination of the environmental conditions of the site, growth rates of the seagrass, the frequency and the intensity of the disturbance. This highlights the importance of considering the species affected as well as the ecology of the seagrass bed, the environmental conditions and the types and nature of activities giving rise to the pressure and the effects of that pressure. For example, pressures that result in sediment modification (e.g. pitting or erosion), sediment change or removal, prolong recovery. Therefore, the resilience of each biotope and habitat definitions is discussed for each pressure. Using a clearly documented, evidence based approach to create sensitivity assessments allows the assessment and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as seagrass habitats may also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.
Resumo:
One of the most pressing challenges today is the need to manage our oceans on a sustainable basis, balancing opportunities for exploitation with the need for conservation and protection. A vital tool for informing sustainable management is access to accurate, up-to-date marine environmental data and information, which is also seen as ‘independent’ by industry, conservationists, policy-makers and other Stakeholders. The Marine Biological Association has specialised in providing independent evidence for over a century and hosts a number of programmes dedicated to independent evidence provision. For example, the Marine Life Information Network (MarLIN) is the most comprehensive information resource for the marine environment of the British Isles and also the largest review of the effects of human activities and natural events on marine species and habitats ever undertaken. MarLIN, along with the Data Archive for Seabed Species and Habitats (DASSH and other MBA information resources, is currently being used to support a wide range of UK and European legislation as well as providing vital underpinning information for industry (e.g. through informing EIAs). We provide an overview of MarLIN in particular whilst examining the importance of ‘independent’ scientific information in a multi-use environment.