865 resultados para Marine Renewable Energy
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography.
Resumo:
Belize is currently faced with several critical challenges associated with the production, distribution and use of energy. Despite an abundance of renewable energy resources, the country remains disproportionately dependent on imported fossil fuels, which exposes it to volatile and rising oil prices, limits economic development, and retards its ability to make the investments that are necessary for adapting to climate change, which pose a particularly acute threat to the small island states and low-lying coastal nations of the Caribbean. This transition from energy consumption and supply patterns that are based on imported fossil fuels and electricity towards a more sustainable energy economy that is based on environmentally benign, indigenous renewable energy technologies and more efficient use of energy requires concerted action as the country is already challenged by limited fiscal space which reduces its ability to provide some fiscal incentives, which have been proven to be effective tools for the promotion of sustainable energy markets in a number of countries. This report identifies the fiscal and regulatory barriers to implementation of energy efficiency measures and renewable energy technologies in Belize. Data and information were derived from stakeholder consultations conducted within the country. The major result of the assessment is that the transition of policies and plans into tangible action needs to be increased. In this regard, it is necessary to articulate sub-policies of the National Energy Policy to amend the Public Utilities Commission Act, to develop a grid interconnection policy, to establish minimum energy performance standards for buildings and equipment and to develop a public procurement policy. Finally, decisions on renewable energy and energy efficiency-related incentives from the Government formally requires decision-makers to solve what may be extremely complex optimization problems in order to obtain the lowest-cost provision of energy services to society, thereby weighing the cost of revenue losses with the benefits of fuel and infrastructure expansion savings. The establishment of a management system that is efficient, flexible, and transparent, which will facilitate the implementation of the strategic objectives and outputs in the time available, with the financial resources allocated is recommended. Support is required for additional institutional and capacity strengthening.
Resumo:
The current energy systems within Curaçao depend primarily on high cost, imported fossil fuels, and typically constitute power sectors that are characterized by small, inefficient generation plants which result in high energy prices. As a consequence of its dependence on external fuel supplies, Curaçao is extremely vulnerable to international oil price shocks, which can impact on economic planning and foreign direct investment within their industrial sectors. The ability of the successive governments to source capital for economic stimulation and social investment is therefore significantly challenging. Additionally, there is over-dependence on two of the most climate-sensitive economic sectors, namely the tourism and fisheries sectors, but the vulnerabilities of the country to the effects of climate change make adaptation difficult and costly. It is within this context that this report focuses on identification of the fiscal and regulatory barriers to implementation of energy efficiency and renewable energy technologies in Curaçao with a view of making recommendations for removal of these barriers. Consultations with key Government officials, the private sector as well as civil society were conducted to obtain information and data on the energy sector in the country. Desktop research was also conducted to supplement the information gathered from the consultations. The major result of the assessment is that Curaçao is at an early stage in the definition of its energy sector. Despite some infrastructural legacies of the pre-independence era, as well as a number of recent developments including the modernization and expansion of its windfarms and completion of a modern Electricity Policy, there are still a number of important institutional and policy gaps within the energy sector in Curaçao. The most significant deficiency is the absence of a ministry or Government agency with portfolio responsibility for the energy sector as a whole; this has: limited the degree to which the activities of energy sector stakeholders are coordinated and retarded the development and implementation of a comprehensive national energy policy. The absence of an energy policy, which provides the framework for energy planning, increases investor risk. Also, the lack of political continuity that has emanated from the frequent changes in Government administrations is a concern among stakeholders and has served to reduce investor confidence in particular, and market confidence in general.
Resumo:
This course will be designed for the officers within government departments who have responsibilty for guiding the country’s energy policy and energy management framework. Other stakeholders also will include private sector representatives who have interest in providing energy efficiency equipment and renewable energy solutions to the market towards advancing improvements in both energy efficiency and meeting renewable energy targets. The course will provide insight into all aspects of energy management with specific emphasis on energy efficiency as well as renewable energy. Emphasis will be placed on highlighting issues and challenges that countries face in pursuing energy efficiency and renewable energy strategies. International and regional best practices will be highlighted as a means of showcasing how various countries have overcome the barriers to advancing renewable energy targets and increasing energy efficiencies towards meeting national energy goals. The curriculum is divided into five modules and is designed to be covered over a 3-day period. The course will be designed to ensure practical application of the learning. The course also is designed to enable the Caribbean to demonstrate leadership in energy efficiency practices and the adoption of renewable energy strategies, serving as a model for other small island developing states.
Resumo:
This project points out a brief overview of several concepts, as Renewable Energy Resources, Distributed Energy Resources, Distributed Generation, and describes the general architecture of an electrical microgrid, isolated or connected to the Medium Voltage Network. Moreover, the project focuses on a project carried out by GRECDH Department in collaboration with CITCEA Department, both belonging to Universitat Politécnica de Catalunya: it concerns isolated microgrids employing renewable energy resources in two communities in northern Peru. Several solutions found using optimization software regarding different generation systems (wind and photovoltaic) and different energy demand scenarios are commented and analyzed from an electrical point of view. Furthermore, there are some proposals to improve microgrid performances, in particular to increase voltage values for each load connected to the microgrid. The extra costs required by the proposed solutions are calculated and their effect on the total microgrid cost are taken into account; finally there are some considerations about the impact the project has on population and on people's daily life.
Resumo:
The present thesis is focused on the study of innovative Si-based materials for third generation photovoltaics. In particular, silicon oxi-nitride (SiOxNy) thin films and multilayer of Silicon Rich Carbide (SRC)/Si have been characterized in view of their application in photovoltaics. SiOxNy is a promising material for applications in thin-film solar cells as well as for wafer based silicon solar cells, like silicon heterojunction solar cells. However, many issues relevant to the material properties have not been studied yet, such as the role of the deposition condition and precursor gas concentrations on the optical and electronic properties of the films, the composition and structure of the nanocrystals. The results presented in the thesis aim to clarify the effects of annealing and oxygen incorporation within nc-SiOxNy films on its properties in view of the photovoltaic applications. Silicon nano-crystals (Si NCs) embedded in a dielectric matrix were proposed as absorbers in all-Si multi-junction solar cells due to the quantum confinement capability of Si NCs, that allows a better match to the solar spectrum thanks to the size induced tunability of the band gap. Despite the efficient solar radiation absorption capability of this structure, its charge collection and transport properties has still to be fully demonstrated. The results presented in the thesis aim to the understanding of the transport mechanisms at macroscopic and microscopic scale. Experimental results on SiOxNy thin films and SRC/Si multilayers have been obtained at macroscopical and microscopical level using different characterizations techniques, such as Atomic Force Microscopy, Reflection and Transmission measurements, High Resolution Transmission Electron Microscopy, Energy-Dispersive X-ray spectroscopy and Fourier Transform Infrared Spectroscopy. The deep knowledge and improved understanding of the basic physical properties of these quite complex, multi-phase and multi-component systems, made by nanocrystals and amorphous phases, will contribute to improve the efficiency of Si based solar cells.
Resumo:
Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.
Resumo:
In this thesis, we propose a novel approach to model the diffusion of residential PV systems. For this purpose, we use an agent-based model where agents are the families living in the area of interest. The case study is the Emilia-Romagna Regional Energy plan, which aims to increase the produc- tion of electricity from renewable energy. So, we study the microdata from the Survey on Household Income and Wealth (SHIW) provided by Bank of Italy in order to obtain the characteristics of families living in Emilia-Romagna. These data have allowed us to artificial generate families and reproduce the socio-economic aspects of the region. The families generated by means of a software are placed on the virtual world by associating them with the buildings. These buildings are acquired by analysing the vector data of regional buildings made available by the region. Each year, the model determines the level of diffusion by simulating the installed capacity. The adoption behaviour is influenced by social interactions, household’s economic situation, the environmental benefits arising from the adoption and the payback period of the investment.