973 resultados para Marine Natural-products
Resumo:
2D-NMR spectroscopic data is reported for the haliclonacyclamines A - D (1)-(4) and for two bismethiodide adducts (5) and (6). The structures of two new alkaloids, haliclonacyclamines C (3) and D (4), which are the 15,16-dihydro analogues of the haliclonacyclamines A (1) and B (2) are described. Revised assignments deduced by 2D-INADEQUATE spectroscopy are presented for (1) and (2). The alkene substituent in the C,, spacer group of (2) and (4) is positioned between C27-C28 by NMR, and confirmed by x-ray structural analysis for (2). Metabolite (3) has a C25-C26 double bond. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Bioassay-directed fractionation of the ethanol extracts of two Amphimedon spp. collected during trawling operations in the Great Australian Eight yielded four new macrocyclic lactone/lactams, amphilactams A-D (1-4). The amphilactams possess potent in vitro nematocidal properties, and their structures were assigned on the basis of detailed spectroscopic analysis and comparison with synthetic model compounds. The amphilactams feature both carbon skeletons and an enamino lactone/lactam moiety unprecedented in the natural products literature.
Resumo:
A Clathria sp. collected in the Great Australian Bight has yielded the novel metabolites clathrins A (6), B (7), and C (8). Structures were assigned to clathrins A-C on the basis of spectroscopic analysis. Clathrin A (6) represents a plausible biosynthetic intermediate that provides an inferred link between marine sesquiterpene/benzenoids and mixed terpene/shikimate biosynthesis.
Resumo:
The C-21 bisfuranoterpene (-)-isotetradehydrofurospongin-1 (6), previously isolated from a Western Australian Spongia sp., has been reisolated from a specimen of Spirastrella papilosa collected during scientific trawling operations in the Great Australian Eight. A 2D NMR analysis of 6 has prompted reassignment of the published structure 5, while degradation and chiral HPLC analysis have allowed determination of the absolute stereochemistry.
Resumo:
A southern Australian marine sponge, Trachycladus laevispirulifer, has yielded a potent new nematocide with antifungal activity which has been identified as onnamide F (1). The structure for 1 was assigned by detailed spectroscopic analysis and chemical conversion to the methyl ester 2. Onnamide F contains a common structural motif previously described in a number of natural products exhibiting interesting pharmacological activities, including the insect chemical defense agent pederin (3), and the sponge metabolites the onnamides, mycalamides, and theopederins.
Resumo:
A Clathria sp. collected during scientific trawling operations in the Great Australian Bight, Australia, has yielded the new alkaloid mirabilin G (1). A structure was secured for 1 by detailed spectroscopic analysis and comparison to known marine alkaloids.
Resumo:
A southern Australian Phorbas sp. has yielded the novel diterpenes phorbasin B (2) and phorbasin C (3). Phorbasins B and C possess a hitherto unknown carbon skeleton, and their structures were assigned on the basis of detailed spectroscopic analyses.
Resumo:
Bioassay-directed fractionation of the EtOH extract of an Oceanapia sp. collected off the northern Rottnest Shelf, Australia, has yielded three novel dithiocyanates, thiocyanatins A (1), B (2a), and C (2b). The structures were determined by detailed spectroscopic analysis and confirmed by total synthesis. In addition to featuring an unprecedented dithiocyanate functionality, thiocyanatins possess an unusual 1,16-difunctionalized n-hexadecane carbon skeleton and are revealed as a hitherto unknown class of nematocidal agents
Resumo:
Bioassay-directed fractionation of two southern Australian sponges, Phoriospongia sp. and Callyspongia bilamellata, yielded two new nematocidal depsipeptides, identified as phoriospongins A (1) and B (2). The structures of the phoriospongins were determined by detailed spectroscopic analysis and comparison with the previously reported sponge depsipeptide cyclolithistide A (3), as well as ESIMS and HPLC analysis of acid hydrolysates. It is noteworthy that the unique and yet structurally related metabolites 1-3 are found in sponges spanning three taxonomic orders, Poescilosclerida, Haplosclerida, and Lithistida.
Resumo:
Bioassay-directed fractionation of a Hymeniacidon sp. yielded as nematocidal agents the equilibrating E/Z bromoindole ethyl esters 1 and 2 and corresponding methyl esters 3 and 4. Also isolated for the first time as a natural product was an equilibrating mixture of seco-xanthine formamides, attributed the trivial name hymeniacidin (5). The structure for 5 was assigned on the basis of detailed spectroscopic analysis and total synthesis.
Resumo:
Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.
Resumo:
The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.
Resumo:
Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells.
Resumo:
A list of opisthobranch molluscs species from the western Mediterranean and nearby Atlantic is presented. These species have natural products that are of interest because of their chemical structure, origin and/or function in benthic ecosystems. This review contains data on the origin and activity of these molecules, collection sites of the animals, and their bibliographic references. A discussion of these subjects is also included.
Resumo:
In the present investigation, we have evaluated the antileishmanial and antitrypanosomal activity of methanolic crude extracts obtained from eight species of cnidarians and of a modified steroid isolated from the octocoral Carijoa riisei. The antileishmanial activity of cnidarians crude extracts showed 50% inhibitory concentration ( IC50) values in the concentration range between 2.8 and 93.3 mu g/mL. Trypomastigotes of Trypanosoma cruzi were less susceptible to the crude extracts, with IC50 values in the concentration range between 40.9 and 117.9 mu g/mL. The steroid (18-acetoxipregna-1,4,20-trien-3-one) displayed a strong antileishmanial activity, with an IC50 value of 5.5 mu g/mL against promastigotes and 16.88 mu g/mL against intracellular amastigotes. The steroid also displayed mammalian cytotoxicity (IC50 of 10.6 mu g/mL), but no hemolytic activity was observed at the highest concentration of 12.5 mu g/mL. The antileishmanial effect of the steroid in macrophages suggested other mechanism than macrophage activation, as no upregulation of nitric oxide was observed. The antitrypanosomal activity of the steroid resulted in an IC50 value of 50.5 mu g/mL. These results indicate the potential of cnidarian natural compounds as antileishmanial drug candidates.