988 resultados para Maple Power Tool
Resumo:
Europe needs to restructure its energy system. The aim to decrease the reliance on fossil fuels to a higher dependence on renewable energy has now been imposed by The European Commission. In order to achieve this goal there is a great interest in Norway to become "The Green Battery of Europe". In the pursuit of this goal a GIS-tool was created to investigate the pump storage potential in Norway. The tool searches for possible connections between existing reservoirs and dams with the criteria selected by the user. The aim of this thesis was to test the tool and see if the results suggested were plausible, develop a cost calculation method for the PSH lines, and make suggestions for further development of the tool. During the process the tool presented many non-feasible pumped storage hydropower (PSH) connections. The area of Telemark was chosen for the more detailed study. The results were discussed and some improvements were suggested for further development of the tool. Also a sensitivity test was done to see which of the parameters set by the user are the most relevant for the PSH connection suggestion. From a range of the most promising PSH plants suggested by the tool, the one between Songavatn and Totak was chosen for a case study, where there already exists a power plant between both reservoirs. A new Pumped Storage Plant was designed with a power production of 1200 MW. There are still many topics open to discussion, such as how to deal with environmental restrictions, or how to deal with inflows and outflows of the reservoirs from the existing power plants. Consequently the GIS-tool can be a very useful tool to establish the best possible connections between existing reservoirs and dams, but it still needs a deep study and the creation of new parameters for the user.
Resumo:
System Advisor Model is a software tool develped by National Renewable Laboratory (NREL), Department Of Energy, USA to design Solar Power Plants.
Resumo:
Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.
Resumo:
Simulation of satellite subsystems behaviour is extramely important in the design at early stages. The subsystems are normally simulated in the both ways : isolated and as part of more complex simulation that takes into account imputs from other subsystems (concurrent design). In the present work, a simple concurrent simulation of the power subsystem of a microsatellite, UPMSat-2, is described. The aim of the work is to obtain the performance profile of the system (battery charging level, power consumption by the payloads, power supply from solar panels....). Different situations such as battery critical low or high level, effects of high current charging due to the low temperature of solar panels after eclipse,DoD margins..., were analysed, and different safety strategies studied using the developed tool (simulator) to fulfil the mission requirements. Also, failure cases were analysed in order to study the robustness of the system. The mentioned simulator has been programed taking into account the power consumption performances (average and maximum consumptions per orbit/day) of small part of the subsystem (SELEX GALILEO SPVS modular generators built with Azur Space solar cells, SAFT VES16 6P4S Li-ion battery, SSBV magnetometers, TECNOBIT and DATSI/UPM On Board Data Handling -OBDH-...). The developed tool is then intended to be a modular simulator, with the chance of use any other components implementing some standard data.
Resumo:
Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, and results show that daily production is predicted with an absolute cvMBE lower than 1.3%.
Resumo:
In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain
Resumo:
Wave energy conversion has an essential difference from other renewable energies since the dependence between the devices design and the energy resource is stronger. Dimensioning is therefore considered a key stage when a design project of Wave Energy Converters (WEC) is undertaken. Location, WEC concept, Power Take-Off (PTO) type, control strategy and hydrodynamic resonance considerations are some of the critical aspects to take into account to achieve a good performance. The paper proposes an automatic dimensioning methodology to be accomplished at the initial design project stages and the following elements are described to carry out the study: an optimization design algorithm, its objective functions and restrictions, a PTO model, as well as a procedure to evaluate the WEC energy production. After that, a parametric analysis is included considering different combinations of the key parameters previously introduced. A variety of study cases are analysed from the point of view of energy production for different design-parameters and all of them are compared with a reference case. Finally, a discussion is presented based on the results obtained, and some recommendations to face the WEC design stage are given.
Resumo:
On-line partial discharge (PD) measurements have become a common technique for assessing the insulation condition of installed high voltage (HV) insulated cables. When on-line tests are performed in noisy environments, or when more than one source of pulse-shaped signals are present in a cable system, it is difficult to perform accurate diagnoses. In these cases, an adequate selection of the non-conventional measuring technique and the implementation of effective signal processing tools are essential for a correct evaluation of the insulation degradation. Once a specific noise rejection filter is applied, many signals can be identified as potential PD pulses, therefore, a classification tool to discriminate the PD sources involved is required. This paper proposes an efficient method for the classification of PD signals and pulse-type noise interferences measured in power cables with HFCT sensors. By using a signal feature generation algorithm, representative parameters associated to the waveform of each pulse acquired are calculated so that they can be separated in different clusters. The efficiency of the clustering technique proposed is demonstrated through an example with three different PD sources and several pulse-shaped interferences measured simultaneously in a cable system with a high frequency current transformer (HFCT).
Resumo:
Tool path generation is one of the most complex problems in Computer Aided Manufacturing. Although some efficient strategies have been developed, most of them are only useful for standard machining. However, the algorithms used for tool path computation demand a higher computation performance, which makes the implementation on many existing systems very slow or even impractical. Hardware acceleration is an incremental solution that can be cleanly added to these systems while keeping everything else intact. It is completely transparent to the user. The cost is much lower and the development time is much shorter than replacing the computers by faster ones. This paper presents an optimisation that uses a specific graphic hardware approach using the power of multi-core Graphic Processing Units (GPUs) in order to improve the tool path computation. This improvement is applied on a highly accurate and robust tool path generation algorithm. The paper presents, as a case of study, a fully implemented algorithm used for turning lathe machining of shoe lasts. A comparative study will show the gain achieved in terms of total computing time. The execution time is almost two orders of magnitude faster than modern PCs.
Resumo:
Decision support systems (DSS) support business or organizational decision-making activities, which require the access to information that is internally stored in databases or data warehouses, and externally in the Web accessed by Information Retrieval (IR) or Question Answering (QA) systems. Graphical interfaces to query these sources of information ease to constrain dynamically query formulation based on user selections, but they present a lack of flexibility in query formulation, since the expressivity power is reduced to the user interface design. Natural language interfaces (NLI) are expected as the optimal solution. However, especially for non-expert users, a real natural communication is the most difficult to realize effectively. In this paper, we propose an NLI that improves the interaction between the user and the DSS by means of referencing previous questions or their answers (i.e. anaphora such as the pronoun reference in “What traits are affected by them?”), or by eliding parts of the question (i.e. ellipsis such as “And to glume colour?” after the question “Tell me the QTLs related to awn colour in wheat”). Moreover, in order to overcome one of the main problems of NLIs about the difficulty to adapt an NLI to a new domain, our proposal is based on ontologies that are obtained semi-automatically from a framework that allows the integration of internal and external, structured and unstructured information. Therefore, our proposal can interface with databases, data warehouses, QA and IR systems. Because of the high NL ambiguity of the resolution process, our proposal is presented as an authoring tool that helps the user to query efficiently in natural language. Finally, our proposal is tested on a DSS case scenario about Biotechnology and Agriculture, whose knowledge base is the CEREALAB database as internal structured data, and the Web (e.g. PubMed) as external unstructured information.
Resumo:
This paper examines an instrument which establishes an explicit link between economic power and foreign policy of the European Union (EU): restrictive measures or sanctions. As the EU is increasingly confronted with situations requiring a firm response, sanctions – arguably the EU’s ‘hardest’ tool – have become somewhat of a standard reaction. To what extent are sanctions a relevant tool for EU external action? By looking at several case studies from a set of 47 autonomous EU sanction cases, this paper acknowledges the many internal and external difficulties the EU faces when using the sanctions tool. However, it also shows that despite those challenges, the ‘hard’ and coercive nature of the sanction instrument nevertheless make it a relevant foreign policy tool which allows the EU to react to external crises.
Resumo:
Richard Strauss’ opera “Salome” is a musical discourse of the uneven power dynamics between male and female with the idea of the gaze as its central narrative. Under the patriarchal premise of the male gaze, the men emerge as the gazers, while the women are relegated to the role of submissive objectification. This paper examines the way Salome manipulates this patriarchal notion of the gaze for her own gain, voluntarily offering herself as the object of the male gaze. I further postulated that Salome strategically oscillates between the stereotypical image of femme fatale and femme fragile, intentionally succumbing to the masculine-constructed demonization and idealization of female power. Consequently, this paper traces how Strauss’ music realizes those gender portrayals and Salome’s resistance against the male order, reflecting the use of musical analyses as a tool in understanding gender roles and power in operas.
Resumo:
Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system
Resumo:
Whilst some authors have portrayed the Internet as a powerful tool for business and political institutions, others have highlighted the potential of this technology for those vying to constrain or counter-balance the power of organizations, through e-collectivism and on-line action. What appears to be emerging is a contested space that has the potential to simultaneously enhance the power of organizations, whilst also acting as an enabling technology for the empowerment of grass-root networks. In this struggle, organizations are fighting for the retention of “old economy” positions, as well as the development of “new economy” power-bases. In realizing these positions, organizations and institutions are strategizing and manoeuvering in order to shape on-line networks and communications. For example, the on-line activities of individuals can be contained through various technological means, such as surveillance, and the structuring of the virtual world through the use of portals and “walled gardens”. However, loose groupings of individuals are also strategizing to ensure there is a liberation of their communication paths and practices, and to maintain the potential for mobilization within and across traditional boundaries. In this article, the unique nature and potential of the Internet are evaluated, and the struggle over this contested virtual space is explored.
Resumo:
This thesis challenges the consensual scholarly expectation of low EU impact in Central Asia. In particular, it claims that by focusing predominantly on narrow, micro-level factors, the prevailing theoretical perspectives risk overlooking less obvious aspects of the EU?s power, including structural aspects, and thus tend to underestimate the EU?s leverage in the region. Therefore, the thesis argues that a more structurally integrative and holistic approach is needed to understand the EU?s power in the region. In responding to this need, the thesis introduces a conceptual tool, which it terms „transnational power over? (TNPO). Inspired by debates in IPE, in particular new realist and critical IPE perspectives, and combining these views with insights from neorealist, neo-institutionalist and constructivist approaches to EU external relations, the concept of TNPO is an analytically eclectic notion, which helps to assess the degree to which, in today?s globalised and interdependent world, the EU?s power over third countries derives from its control over a combination of material, institutional and ideational structures, making it difficult for the EU?s partners to resist the EU?s initiatives or to reject its offers. In order to trace and assess the mechanisms of EU impact across these three structures, the thesis constructs a toolbox, which centres on four analytical distinctions: (i) EU-driven versus domestically driven mechanisms, (ii) mechanisms based on rationalist logics of action versus mechanisms following constructivist logics of action, (iii) agent-based versus purely structural mechanisms of TNPO, and (iv) transnational and intergovernmental mechanisms of EU impact. Using qualitative research methodology, the thesis then applies the conceptual model to the case of EU-Central Asia. It finds that the EU?s power over Central Asia effectively derives from its control over a combination of material, institutional and ideational structures, including its position as a leader in trade and investment in the region, its (geo)strategic and security-related capabilities vis-à-vis Central Asia, as well as the relatively dense level of institutionalisation of its relations with the five countries and the positive image of the EU in Central Asia as a more neutral actor.