916 resultados para Map-matching
Resumo:
In order to comprehend user information needs by concepts, this paper introduces a novel method to match relevance features with ontological concepts. The method first discovers relevance features from user local instances. Then, a concept matching approach is developed for matching these features to accurate concepts in a global knowledge base. This approach is significant for the transition of informative descriptor and conceptional descriptor. The proposed method is elaborately evaluated by comparing against three information gathering baseline models. The experimental results shows the matching approach is successful and achieves a series of remarkable improvements on search effectiveness.
Resumo:
Data structures such as k-D trees and hierarchical k-means trees perform very well in approximate k nearest neighbour matching, but are only marginally more effective than linear search when performing exact matching in high-dimensional image descriptor data. This paper presents several improvements to linear search that allows it to outperform existing methods and recommends two approaches to exact matching. The first method reduces the number of operations by evaluating the distance measure in order of significance of the query dimensions and terminating when the partial distance exceeds the search threshold. This method does not require preprocessing and significantly outperforms existing methods. The second method improves query speed further by presorting the data using a data structure called d-D sort. The order information is used as a priority queue to reduce the time taken to find the exact match and to restrict the range of data searched. Construction of the d-D sort structure is very simple to implement, does not require any parameter tuning, and requires significantly less time than the best-performing tree structure, and data can be added to the structure relatively efficiently.
Resumo:
As one of the measures for decreasing road traffic noise in a city, the control of the traffic flow and the physical distribution is considered. To conduct the measure effectively, the model for predicting the traffic flow in the citywide road network is necessary. In this study, the existing model named AVENUE was used as a traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model and the sound propagation model, and the new road traffic noise prediction model was established. As a case study, the prediction model was applied to the road network of Tsukuba city in Japan and the noise map of the city was made. To examine the calculation accuracy of the noise map, the calculated values of the noise at the main roads were compared with the measured values. As a result, it was found that there was a possibility that the high accuracy noise map of the city could be made by using the noise prediction model developed in this study.
Resumo:
An algorithm for computing dense correspondences between images of a stereo pair or image sequence is presented. The algorithm can make use of both standard matching metrics and the rank and census filters, two filters based on order statistics which have been applied to the image matching problem. Their advantages include robustness to radiometric distortion and amenability to hardware implementation. Results obtained using both real stereo pairs and a synthetic stereo pair with ground truth were compared. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
This paper is devoted to the analysis of career paths and employability. The state-of-the-art on this topic is rather poor in methodologies. Some authors propose distances well adapted to the data, but are limiting their analysis to hierarchical clustering. Other authors apply sophisticated methods, but only after paying the price of transforming the categorical data into continuous, via a factorial analysis. The latter approach has an important drawback since it makes a linear assumption on the data. We propose a new methodology, inspired from biology and adapted to career paths, combining optimal matching and self-organizing maps. A complete study on real-life data will illustrate our proposal.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and, thus, help in making good decisions about which product to buy from the vast amount of product choices. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based approaches. These approaches are not directly applicable for recommending infrequently purchased products such as cars and houses as it is difficult to collect a large number of ratings data from users for such products. Many of the ecommerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user’s query are retrieved and recommended. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their interest. In this article, a simple user profiling approach is proposed to generate user’s preferences to product attributes (i.e., user profiles) based on user product click stream data. The user profiles can be used to find similarminded users (i.e., neighbours) accurately. Two recommendation approaches are proposed, namely Round- Robin fusion algorithm (CFRRobin) and Collaborative Filtering-based Aggregated Query algorithm (CFAgQuery), to generate personalized recommendations based on the user profiles. Instead of using the target user’s query to search for products as normal search based systems do, the CFRRobin technique uses the attributes of the products in which the target user’s neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAgQuery technique uses the attributes of the products that the user’s neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAgQuery perform better than the standard Collaborative Filtering and the Basic Search approaches, which are widely applied by the current e-commerce applications.
Resumo:
Background Several lines of evidence suggests that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but a complete mapping the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors which may be involved in one subtype may not be in others. We investigated the possibility that this network could be mapped using microarray technologies and modern bioinformatics methods on a dataset from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls, Methodology/Principal Findings We have used two different analytical methodologies: a differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that seem to be statistically overrepresented in genes which are either differentially expressed (or differentially co-expressed) in cases and controls (e.g. V$KROX_Q6, p-value < 3.31E-6; V$CREBP1_Q2, p-value < 9.93E-6, V$YY1_02, p-value < 1.65E-5). Conclusions/significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. Analysing the published literature we have found that these transcription factors are involved in the early T-lymphocyte specification and commitment as well as in oligodendrocytes dedifferentiation and development. The most significant transcription factors motifs were for the Early Growth response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families.
Resumo:
Recent road safety statistics show that the decades-long fatalities decreasing trend is stopping and stagnating. Statistics further show that crashes are mostly driven by human error, compared to other factors such as environmental conditions and mechanical defects. Within human error, the dominant error source is perceptive errors, which represent about 50% of the total. The next two sources are interpretation and evaluation, which accounts together with perception for more than 75% of human error related crashes. Those statistics show that allowing drivers to perceive and understand their environment better, or supplement them when they are clearly at fault, is a solution to a good assessment of road risk, and, as a consequence, further decreasing fatalities. To answer this problem, currently deployed driving assistance systems combine more and more information from diverse sources (sensors) to enhance the driver's perception of their environment. However, because of inherent limitations in range and field of view, these systems' perception of their environment remains largely limited to a small interest zone around a single vehicle. Such limitations can be overcomed by increasing the interest zone through a cooperative process. Cooperative Systems (CS), a specific subset of Intelligent Transportation Systems (ITS), aim at compensating for local systems' limitations by associating embedded information technology and intervehicular communication technology (IVC). With CS, information sources are not limited to a single vehicle anymore. From this distribution arises the concept of extended or augmented perception. Augmented perception allows extending an actor's perceptive horizon beyond its "natural" limits not only by fusing information from multiple in-vehicle sensors but also information obtained from remote sensors. The end result of an augmented perception and data fusion chain is known as an augmented map. It is a repository where any relevant information about objects in the environment, and the environment itself, can be stored in a layered architecture. This thesis aims at demonstrating that augmented perception has better performance than noncooperative approaches, and that it can be used to successfully identify road risk. We found it was necessary to evaluate the performance of augmented perception, in order to obtain a better knowledge on their limitations. Indeed, while many promising results have already been obtained, the feasibility of building an augmented map from exchanged local perception information and, then, using this information beneficially for road users, has not been thoroughly assessed yet. The limitations of augmented perception, and underlying technologies, have not be thoroughly assessed yet. Most notably, many questions remain unanswered as to the IVC performance and their ability to deliver appropriate quality of service to support life-saving critical systems. This is especially true as the road environment is a complex, highly variable setting where many sources of imperfections and errors exist, not only limited to IVC. We provide at first a discussion on these limitations and a performance model built to incorporate them, created from empirical data collected on test tracks. Our results are more pessimistic than existing literature, suggesting IVC limitations have been underestimated. Then, we develop a new CS-applications simulation architecture. This architecture is used to obtain new results on the safety benefits of a cooperative safety application (EEBL), and then to support further study on augmented perception. At first, we confirm earlier results in terms of crashes numbers decrease, but raise doubts on benefits in terms of crashes' severity. In the next step, we implement an augmented perception architecture tasked with creating an augmented map. Our approach is aimed at providing a generalist architecture that can use many different types of sensors to create the map, and which is not limited to any specific application. The data association problem is tackled with an MHT approach based on the Belief Theory. Then, augmented and single-vehicle perceptions are compared in a reference driving scenario for risk assessment,taking into account the IVC limitations obtained earlier; we show their impact on the augmented map's performance. Our results show that augmented perception performs better than non-cooperative approaches, allowing to almost tripling the advance warning time before a crash. IVC limitations appear to have no significant effect on the previous performance, although this might be valid only for our specific scenario. Eventually, we propose a new approach using augmented perception to identify road risk through a surrogate: near-miss events. A CS-based approach is designed and validated to detect near-miss events, and then compared to a non-cooperative approach based on vehicles equiped with local sensors only. The cooperative approach shows a significant improvement in the number of events that can be detected, especially at the higher rates of system's deployment.
Resumo:
A people-to-people matching system (or a match-making system) refers to a system in which users join with the objective of meeting other users with the common need. Some real-world examples of these systems are employer-employee (in job search networks), mentor-student (in university social networks), consume-to-consumer (in marketplaces) and male-female (in an online dating network). The network underlying in these systems consists of two groups of users, and the relationships between users need to be captured for developing an efficient match-making system. Most of the existing studies utilize information either about each of the users in isolation or their interaction separately, and develop recommender systems using the one form of information only. It is imperative to understand the linkages among the users in the network and use them in developing a match-making system. This study utilizes several social network analysis methods such as graph theory, small world phenomenon, centrality analysis, density analysis to gain insight into the entities and their relationships present in this network. This paper also proposes a new type of graph called “attributed bipartite graph”. By using these analyses and the proposed type of graph, an efficient hybrid recommender system is developed which generates recommendation for new users as well as shows improvement in accuracy over the baseline methods.
Resumo:
Online dating websites enable a specific form of social networking and their efficiency can be increased by supporting proactive recommendations based on participants' preferences with the use of data mining. This research develops two-way recommendation methods for people-to-people recommendation for large online social networks such as online dating networks. This research discovers the characteristics of the online dating networks and utilises these characteristics in developing efficient people-to-people recommendation methods. Methods developed support improved recommendation accuracy, can handle data sparsity that often comes with large data sets and are scalable for handling online networks with a large number of users.
Resumo:
This paper reports on a study that demonstrates how to apply pattern matching as an analytical method in case-study research. Case-study design is appropriate for the investigation of highly-contextualized phenomena that occur within the social world. Case-study design is considered a pragmatic approach that permits employment of multiple methods and data sources in order to attain a rich understanding of the phenomenon under investigation. The findings from such multiple methods can be reconciled in case-study analysis, specifically through a pattern-matching technique. Although this technique is theoretically explained in the literature, there is scant guidance on how to apply the method practically when analyzing data. This paper demonstrates the steps taken during pattern matching in a completed case-study project that investigated the influence of cultural diversity in a multicultural nursing workforce on the quality and safety of patient care. The example highlighted in this paper contributes to the practical understanding of the pattern-matching process, and can also make a substantial contribution to case-study methods.
Resumo:
The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks...