938 resultados para Manganês peroxidase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immobilization of enzymes in nanostructured films has potential applications, e.g. in biosensing, for which the activity may not only be preserved, but also enhanced if optimized conditions are identified. Optimization is not straightforward because several requirements must be fulfilled, including a suitable matrix and film-forming technique. In this study, we show that horseradish peroxidase (HRP) has its activity enhanced when immobilized in Langmuir-Blodgett (LB) films, in conjunction with dipalmitoylphosphaticlylglycerol (DPPG). Incorporation of HRP into a DPPG monolayer at the air-water interface was demonstrated with compression isotherms, and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS). From the PM-IRRAS data, we inferred that HRP was not denatured when adsorbed on a pre-formed, low pressure DPPG monolayer. A change in orientation was induced by the phospholipid matrix, with the amide C=O and NH groups from HRP being oriented perpendicular to the surface, parallel to the DPPG acyl chains, i.e. the alpha-helix was inserted into the monolayer. The mixed DPPG-HRP monolayer could be transferred onto solid supports, to which HRP activity was ca. 23% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allowed HRP-containing LB films to be used in sensing peroxide. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method employed to incorporate guest molecules onto phospholipid Langmuir monolayers plays an important role in the interaction between the monolayer and the guest molecules. In this paper, we show that for the interaction between horseradish peroxidase (HRP) and a monolayer of dipalmitoylphosphatidylglycerol (DPPG) does depend on the method of HRP incorporation. The surface pressure isotherms of the mixed DPPG/HRP monolayers, for instance, were less expanded when the two materials were co-spread than in the case where HRP was injected into the subphase. Therefore, the method for incorporation affected not only the penetration of HRP but also the changes in molecular packing caused to the DPPG monolayer. With experiments with the monolayer on a pendant drop, we observed that the incorporation of HRP affects the dynamic elasticity of the DPPG monolayer, on a way that varies with the surface pressure. At low pressures, HRP causes the monolayer to be more rigid, while the converse is true for surface pressures above 8 mN/m. Taken all the results together, we conclude that HRP is more efficiently incorporated if injected into the subphase on which a DPPG monolayer had been spread and that the interaction between HRP and DPPG is maintained even at high surface pressures. This is promising for the possible transfer of mixed films onto solid substrates and for applications in biosensors and drug delivery systems. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins containing reactive cysteine residues (protein-Cys) are receiving increased attention as mediators of hydrogen peroxide signaling. These proteins are mainly identified by mining the thiol proteomes of oxidized protein-Cys in cells and tissues. However, it is difficult to determine if oxidation occurs through a direct reaction with hydrogen peroxide or by thiol-disulfide exchange reactions. Kinetic studies with purified proteins provide invaluable information about the reactivity of protein-Cys residues with hydrogen peroxide. Previously, we showed that the characteristic UV-Vis spectrum of horseradish peroxidase compound I, produced from the oxidation of horseradish peroxidase by hydrogen peroxide, is a simple, reliable, and useful tool to determine the second-order rate constant of the reaction of reactive protein-Cys with hydrogen peroxide and peroxynitrite. Here, the method is fully described and extended to quantify reactive protein-Cys residues and micromolar concentrations of hydrogen peroxide. Members of the peroxiredoxin family were selected for the demonstration and validation of this methodology. In particular, we determined the pK(a) of the peroxidatic thiol of rPrx6 (5.2) and the second-order rate constant of its reactions with hydrogen peroxide ((3.4 +/- 0.2) x 10(7) M(-1) s(-1)) and peroxynitrite ((3.7 +/- 0.4) x 10(5) M(-1) s(-1)) at pH 7.4 and 25 degrees C. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike intermolecular disulfide bonds, other protein cross-links arising from oxidative modifications cannot be reversed and are presumably more toxic to cells because they may accumulate and induce protein aggregation. However, most of these irreversible protein cross-links remain poorly characterized. For instance, the antioxidant enzyme human superoxide dismutase 1 (hSod1) has been reported to undergo non-disulfide covalent dimerization and further oligomerization during its bicarbonate-dependent peroxidase activity. The dimerization was shown to be dependent on the oxidation of the single, solvent-exposed TrP(32) residue of hSod1, but the covalent dimer was not isolated nor was its structure determined. In this work, the hSod1 covalent dimer was isolated, digested with trypsin in H(2)O and H(2)(18)O, and analyzed by UV-Vis spectroscopy and mass spectrometry (MS). The results demonstrate that the covalent dimer consists of two hSod1 subunits cross-linked by a ditryptophan, which contains a bond between C3 and N1 of the respective Trp(32) residues. We further demonstrate that the cross-link cleaves under usual MS/MS conditions leading to apparently unmodified Trp(32), partially hinders proteolysis, and provides a mechanism to explain the formation of hSod1 covalent trimers and tetramers. This characterization of the covalent hSod1 dimer identifies a novel oxidative modification of protein Trp residues and provides clues for studying its occurrence in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inactivation kinetics of enzymes polyphenol oxidase (PPO) and peroxidase (POD) was studied for the batch (discontinuous) microwave treatment of green coconut water. Inactivation of commercial PPO and POD added to sterile coconut water was also investigated. The complete time-temperature profiles of the experimental runs were used for determination of the kinetic parameters D-value and z-value: PPO (D(92.20 degrees C) = 52 s and z = 17.6 degrees C); POD (D(92.92 degrees C) = 16 s and z = 11.5 degrees C); PPO/sterile coconut water: (D(84.45 degrees C) = 43 s and z = 39.5 degrees C) and POD/sterile coconut water: (D(86.54 degrees C) = 20 s and z = 19.3 degrees C). All data were well fitted by a first order kinetic model. The enzymes naturally present in coconut water showed a higher resistance when compared to those added to the sterilized medium or other simulated solutions reported in the literature. The thermal inactivation of PPO and POD during microwave processing of green coconut water was significantly faster in comparison with conventional processes reported in the literature. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta pesqUisa objetiva desenvolver, testar e demonstrar a aplicabilidade de um modelo infonnacional que possibilite a gestão integrada das operações da cadeia de suprimentos para indústrias geograficamente dispersas, também denominadas indústrias multi planta. Para tanto, serão aplicadas metodologias de estudo de caso e pesquisa-ação, em uma empresa representativa dos setores mineral e metalúrgico, o Departamento de Manganês e Ferro-Ligas da CVRD - Cia. Vale do Rio Doce. A pesquisa pretende demonstrar que o modelo de sistema infonnacional proposto, por meio da automatização dos processos transacionais e gerenciais, é capaz de prover recursos de planejamento e controle nos níveis operacional, tático e estratégico, devido a sua capacidade de incrementar a velocidade e a qualidade dos processos de análise e decisão. A pesquisa pretende conduzir, após análise dos resultados e avaliação das contribuições à empresa estudada, a um modelo informacional adequado para gerir as operações de outras empresas de mineração e metalurgia com características semelhantes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the chemical method of synthesis of co-precipitation were produced ferrite powders manganese-cobalt equal stoichiometric formula Mn (1-x) Co (x) Fe2O4, for 0 < x < 1, first reagent element using as the hydroxide ammonium and second time using sodium hydroxide. The obtained powders were calcined at 400 ° C, 650 ° C, 900 ° C and 1150 ° C in a conventional oven type furnace with an air atmosphere for a period of 240 minutes. Other samples were calcined at a temperature of 900 ° C in a controlled atmosphere of argon, to evaluate the possible influence of the atmosphere on the final results the structure and morphology. The samples were also calcined in a microwave oven at 400 ° C and 650 ° C for a period of 45 minutes possible to evaluate the performance of this type of heat treatment furnace. It was successfully tested the ability of this group include isomorphic ferrite with the inclusion of nickel cations in order to evaluate the occurrence of disorder in the crystalline structures and their changes in magnetic characteristics.To identify the structural, morphological, chemical composition and proportions, as well as their magnetic characteristics were performed characterization tests of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), thermogravimetric (TG), vibrating sample magnetometry (MAV) and Mössbauer spectroscopy. These tests revealed the occurrence of distortion in the crystal lattice, changes in magnetic response, occurrence of nanosized particles and superparamagnetism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulating evidence points to relationships between increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. Chlorpromazine (CPZ), which remains a benchmark treatment for people with schizophrenia, has been described as a pro-oxidant compound. Because the antioxidant compound melatonin exerts protective effects against CPZ-induced liver disease in rats, in this investigation, our main objective was to study the effect of CPZ as a co-catalyst of peroxidase-mediated oxidation of melatonin. We found that melatonin was an excellent reductor agent of preformed CPZ cation radical (CPZ(center dot+)). The addition of CPZ during the horseradish peroxidase (HRP)-catalyzed oxidation of melatonin provoked a significant increase in the rate of oxidation and production of N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK). Similar results were obtained using myeloperoxidase. The effect of CPZ on melatonin oxidation was rather higher at alkaline pH. At pH 9.0, the efficiency of oxidation of melatonin was 15 times higher and the production of AFMK was 30 times higher as compared with the assays in the absence of CPZ. We suggest that CPZ is able to exacerbate the rate of oxidation of melatonin by an electron transfer mechanism where CPZ(center dot+), generated during the peroxidase-catalyzed oxidation, is able to efficiently oxidize melatonin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com base na hipótese de que a soja transgênica tolerante ao glyphosate necessitaria da adição complementar de manganês devido a alterações na absorção e no metabolismo do elemento pelas plantas, objetivou-se estudar a interação da soja transgênica pulverizada com glyphosate e a adubação foliar com manganês. Foi desenvolvido experimento em campo, no ano agrícola 2007/2008, na Fazenda de Ensino, Pesquisa e Produção da UNESP, campus de Jaboticabal, SP. O delineamento experimental foi o de blocos ao acaso, no esquema fatorial 4 x 4, com quatro repetições. Foram avaliados quatro manejos de plantas daninhas [glyphosate (p.c. Roundup Ready) a 0,72 e 1,20 kg ha-1 de equivalente ácido, fluazifop-p-butyl + fomesafen (p.c. Fusiflex) a 0,25 + 0,25 kg ha-1 e testemunha capinada, sem herbicida] e quatro doses (0, 42, 84 e 126 g ha-1) de manganês em aplicação foliar na soja. Os tratamentos estudados não alteraram significativamente a produtividade de grãos, os teores de manganês no solo, a altura e a matéria seca das plantas de soja. Apenas a mistura fluazifop-p-butyl mais fomesafen ocasionou injúrias visuais nas plantas, porém os sintomas ficaram restritos às folhas que interceptaram o jato de pulverização. Para massa de 100 grãos, os herbicidas estudados não diferiram da testemunha; no entanto, as plantas tratadas com 0,72 kg ha-1 de glyphosate apresentaram menor massa de grãos. A aplicação de manganês não influenciou os teores do elemento nas plantas tratadas com glyphosate e naquelas sem herbicida. Portanto, o glyphosate não prejudicou a absorção ou o metabolismo do manganês pela planta, e o crescimento e desenvolvimento das plantas tratadas foram estatisticamente similares aos das não tratadas com herbicidas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dois experimentos foram conduzidas, em condições de casa-de--vegetação com o objetivo de caracterizar diferenças entre cultivares de tomateiro (Lycopersvcum esculentum Mill) com relação à tolerância ao alumínio e ao manganês. No primeiro experimento foram cultivados em Latossol Roxo (solo ácido, com níveis elevados de alumínio e manganês), seis cultivares de tomateiro: Santa Cruz Kada, Angela IAC 3946, Vital, Roma VF, Pavebo 220 e Ronita N, os três primeiros de crescimento indeterminado e os restantes de crescimento determinado. No segundo experimento, os cultivares Santa Cruz Kada e Ronita N que apresentaram um contraste de desenvolvimento no solo ácido, foram cultivados em solução nutritiva de HOAGLAND & ARNON, modificada para níveis de manganês (0,5 ; 1,5 e 3,0 ppm) e com adição de níveis de alumínio (0,0; 10,0 e 20,00 ppm). Os resultados obtidos permitiram indicar o cultivar Santa Cruz Kada como mais tolerante ao alumínio que o cultuar Ronita N. A maior sensibilidade ao alumínio do cultivar Ronita N foi associada com uma maior exigência em cálcio e fósforo, com uma maior absorção de alumínio e também com efeito depressivo do alumínio na absorção dos nutrientes mencionados, em relação ao cultivar Santa Cruz Kada. A tolerância do cultivar Santa Cruz Kada ao alumínio apesar de ser maior que a do Ronita N pode ser considerada de grau relativamente baixo, podendo-se esperar ainda, boas respostas dessas plantas à calagem nos cultivares em solos ácidos. O comportamento dos cultivares frente aos níveis de manganês em solução nutritiva foi semelhante, não sendo observado qualquer efeito prejudicial do elemento nos níveis empregados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O trabalho teve por objetivo avaliar a influência de diferentes fontes e modos de aplicação de manganês, em plantas de soja, sobre o potencial fisiológico das sementes produzidas e a massa de mil sementes. Os tratamentos constaram de fontes de manganês aplicadas via solo (MnSO4.4H2O e Oxi-sulfato Mn) e via foliar (MnSO4.4H2O, Quelado Cl-, Quelado NO3- e Quelado SO4(2-)); para as sementes produzidas, determinaram-se a massa de mil sementes, a germinação e o vigor (envelhecimento acelerado e condutividade elétrica). Diante dos resultados obtidos, concluiu-se que a aplicação de manganês exerceu influência positiva sobre a massa das sementes de soja produzidas e que o estado nutricional das plantas, em relação ao manganês, não influenciou o potencial fisiológico das sementes produzidas.